Evaluation of DNA Damage in Peripheral Blood Lymphocytes Exposed to Gamma Radiation

Document Type : Original Article

Authors

1 Physics Department, Faculty of Women for Arts; Science and Education, Ain Shams University, Cairo, Egypt.

2 Radiation Health Department, National Center for Radiation Research & Technology, Cairo, Egypt.

3 Biophysics Department, Faculty of Science, Cairo University, 12613, Giza, Egypt. Physics Department, Faculty of Science, Islamic University in Madinah, KSA.

Abstract

The contribution of Ionizing Radiation (IoR) in diagnosis and therapy increases every day. Therefore it is considered one of the most popular genotoxic exogenous agent. Hence the estimation of DNA damages due to the applied IoR dose is a must. There are many techniques used for the detection of DNA damage that depend on different measurable parameters. In this work, Comet and Cytochalasin-B Blocked Micronucleus (CBMN) assays were applied in order to detect the extent of DNA damage due to the exposure to different doses of gamma rays. Peripheral blood lymphocytes were exposed to doses of 2, 4, 6, and 8 Gy from 137Cs gamma-radiation source. Measured Comet assay dose parameters (tail DNA, tail length and tail moment) exhibit a significantly high correlation (p < 0.01) with the exposure dose. However, micronuclei (MNi) (CBMN parameter) showed a p-value greater than 0.05. Thus we can conclude that Comet assay is evidently more reliable than CBMN in the estimation of the magnitude of DNA damage in peripheral blood lymphocytes due to exposure to gamma radiation.

Keywords


[1] S. Angelini ,  R. Kumar, F. Carbone , F. Maffei, C. G. Forti, F. S. Violante,  V. Lodi,  S. Curti , K. Hemminki, P. Hrelia , “Micronuclei in humans induced by exposure to low level of ionizing radiation: Influence of polymorphisms in DNA repair genes,” Mutat. Res. - Fundam. Mol. Mech. Mutagen. 570 : (2005) 105–117.
[2] D. R. Spitz, E. I. Azzam, J. J. Li, and D. Gius, “Metabolic oxidation / reduction reactions and cellular responses to ionizing radiation : A unifying concept in stress response biology,” Cancer Metastasis Rev. 23: (2004)311–322.
[3] B. Murat, O. Gokhan, and E. Cuneyt, Basic Radiation Oncology, Springer,(2010), London.
[4] E. I. Azzam, J. P. Jay-Gerin, and D. Pain, “Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury,” Cancer Lett. 327: (2012) 48–60.
[5] L. Al-jameel, R. S. Ahmed, and H. A. Shamran, “Ionizing Radiation Effect and DNA damage in the workers of Al-Tuwaitha Nuclear Site,” Iraqi J. Sci. 60 : (2019) 2636–2641.
[6] S. Kaur, K. K. Galhna, and N. Gautam, “Assessment of Radiation Induced DNA Damage in Human Peripheral Blood Lymphocytes Using COMET Assay,” Int. J. Life. Sci. Sci. Res. 3: (2017)  1208–1214.
[7] R. P. Araldia, T. C. Meload, T. B. Mendes, P. Luizde Sá Júniora, B. H. N.  Nozimad, E. T. Ito, R. Franco de Carvalho , E.  Barreiros de Souza, R. Stoccoa, “Using the comet and micronucleus assays for genotoxicity studies : A review,” Biomed. Pharmacother. 72: (2015) 74–82.
[8] J. de Lapuente, J. Lourenço, S. A.  Mendo, M. Borràs, M. G. Martins, P. M. Costa, M. Pacheco , “The Comet Assay and its applications in the field of ecotoxicology: a mature tool that continues to expand its perspectives,” Front. Genet. 6: (2015), doi: 10.3389/fgene.2015.00180.
[9] G. Gajski, M. Geri, V. Oreščaninb, and V. Garaj-Vrhovac, “Ecotoxicology and Environmental Safety Cytokinesis-block micronucleus cytome assay parameters in peripheral blood lymphocytes of the general population : Contribution of age , sex , seasonal variations and lifestyle factors,” Ecotoxicol. Environ. Saf. 148: (2018) 561–570.
[10] S. Sommer, I. Buraczewska, and M. Kruszewski, “Micronucleus Assay : The State of Art , and Future Directions,” 21: (2020), doi:10.3390/ijms21041534.
[11] N. P. Singh, M. T. McCoy, R. R. Tice, and E. L. Schneider, “A simple technique for quantitation of low levels of DNA damage in individual cells,” Exp. Cell Res. 175: (1988)  184–191.
[12]  R. R. Tice, E. Agurell , D. Anderson, B. Burlinson, A. Hartmann , H. Kobayashi , Y. Miyamae , E. Rojas, J.C. Ryu , Y. F. Sasaki , “Single Cell Gel / Comet Assay : Guidelines for In Vitro and In Vivo Genetic Toxicology Testing,” Environmental and Molecular Mutagenesis 35: (2000) 206–221.
[13] A. R. Collins and A. Azqueta, “DNA repair as a biomarker in human biomonitoring studies ; further applications of the comet assay,” Mutat. Res. - Fundam. Mol. Mech. Mutagen. 736 : (2012) 122–129.
[14] Z. Kayaalti, S. Yalcin, and T. Soylemezoglu, “Searching of Standard Comet Assay Parameters for Detecting Lymphocyte Council for Innovative Research,” Journal Of Advances in Biology 3: (2014) 234-241.
[15] M. Khisroon, A. Khan, M. Naseem, and N. Ali, “Evaluation of DNA damage in lymphocytes of radiology personnel by comet assay,” J. Occup. Health,  57: (2015) 268–274.
[16] M. Augustyniak, M. Gladysz, and M. Dziewie, “Mutation Research / Reviews in Mutation Research The Comet assay in insects — Status , prospects and benefits for science,” Mutat. Res., vol. 767, pp. 67–76, 2016.
[17] T. S. Kumaravel and A. N. Jha, “Reliable Comet assay measurements for detecting DNA damage induced by ionising radiation and chemicals,” Mutation Research 605 : (2006) 7–16.
[18] A. R. Collins, A. AA. Oscoz, G.  Brunborg, I. Gaivão, L. Giovannelli, M. Kruszewski , C. C. Smith, R. Stetina  , “The comet assay: Topical issues,” Mutagenesis 23: (2008) 143–151.
[19] P. Duez, G. Dehon, A. Kumps, and J. Dubois, “Statistics of the Comet assay : a key to discriminate between genotoxic effects ,” Mutagenesis 18: (2003) 159–166.
[20] J. A. Heddle, M. C. Cimino, M. Hayashi, F. Romagna, M. D. Shelby, J. D. Tucker, P. Vanparys , J. T. MacGregor., “Micronuclei as an Index of Cytogenetic Damage : Past , Present , and Future,” Environmental and Molecular Mutagenesis 291 : (1991) 277–291.
[21] M. Fenech, “The in vitro micronucleus technique,” Funtamental and Molecular Mechanisms of Mutagenesis 455: (2000) 81–95.
[22] M. Fenech, “Cytokinesis-block micronucleus cytome assay,” Nat. Protoc. 2:  (2016) 1084-1105 .
[23] Y. Shibamoto, C. Streffer, C. Fuhrmann, and V. Budach, “Tumor Radiosensitivity Prediction by the Cytokinesis-Block Micronucleus Assay,” Rad. Research  128 : (1991) 293–300.
[24] P. Thomas and M. Fenech 2010  in V. V. Didenko DNA Damage Detection In Situ, Ex Vivo, and In Vivo Methods and Protocol ( Springer) p 218.
[25] A. T. Doherty 2012  in J. M. Parry and E. M. Parry  Genetic Toxicology Principles and Methods (Humana Press) p 121.
[26] M. Inoue, G.-P. Shen, M. A. Chaudhry, H. Galick, J. O. Blaisdell, and S. S. Wallace, “Expression of the Oxidative Base Excision Repair Enzymes is not Induced in TK6 Human Lymphoblastoid Cells after Low Doses of Ionizing Radiation,” Radiat. Res., vol. 161: (2004) 409–417.
[27] D. C. Kim, M. Kang, A. Biswas, C. R. Yang, X. Wang, and J. X. Gao, “Effects of low dose ionizing radiation on DNA damage-caused pathways by reverse-phase protein array and Bayesian networks,” J. Bioinform. Comput. Biol. 15: (2017) 1–18.
[28] S. Nandhakumar, S. Parasuraman, M. M. Shanmugam, R. R. K, P. Chand, and V. B. B, “Evaluation of DNA damage using single-cell gel electrophoresis ( Comet Assay ),” vol. 2, no. 2, 2011.
[29] W. Sudprasert, P. Navasumrit, and M. Ruchirawat, “Effects of low-dose gamma radiation on DNA damage, chromosomal aberration and expression of repair genes in human blood cells,” Int. J. Hyg. Environ. Health  209  : (2006) 503–511.
[30] V. Shetty, N. Shetty, S. Ananthanarayana, S. Jha3, and R. Chaubey4, “Evaluation of gamma radiation-induced DNA damage in Aedes aegypti using the comet assay,” Toxicol. Ind. Health: (2017)1–8.
[31] V. Garaj-vrhovac and N. Kopjar, “The alkaline Comet assay as biomarker in assessment of DNA damage in medical personnel occupationally exposed to ionizing radiation,” Mutagenesis 18 : (2003) 265–271.
[32] N. R. Prasad, V. P. Menon, V. Vasudev, and K. V Pugalendi, “Radioprotective effect of sesamol on γ-radiation induced induced DNA damage , lipid peroxidation and antioxidants levels in cultured human lymphocytes,” Toxicology 209: (2005) 225–235.
[33] S. B. Nadin, L. M. V. Roig, and D. R. Ciocca, “A Silver Staining Method for Single-cell Gel Assay,” J. Histochem. Cytochem., 49: (2001) 1183–1186.