Influence of annealing temperature of α- Fe2O3 nanoparticles on Structure and Optical Properties.

Document Type : Original Article

Authors

1 Radiation Physics Department, National Centre for Radiation Research and Technology(NCRT), Atomic Energy Authority (AEA), Nasr City, Cairo, Egypt.

2 Spectroscopy Department, Physics Division, National Research Centre (NRC), Egypt.

3 Physics Department, Faculty of Women, Ain Shams University, Cairo, Egypt.

Abstract

This work has been focused on the synthesis of the raw materials iron oxide nanoparticles; hematite (α -Fe2O3)   from Iron (II) chloride tetra hydrate (FeCl2-4H2O) and iron (III) chloride hexahydrate (FeCl3-6H2O) using Solid State Chemical Reaction technique. Nanostructure powders were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and UV-visible spectroscopy. XRD confirmed the formation of crystalline α -Fe2O3 nanostructured andits average crystallite size increased from ~ 12 to 28 nm with increasing annealing temperature from 200 up to 80℃ while SEM confirmed the morphology and the purity of the sample was evaluated from the energy dispersive spectrum (EDS). Moreover, strain decreased with increasing annealing temperature. UV-visible characterization indicated the existence of both direct and indirect band gap in the samples. All The annealed samples showed the direct band gap at ~ 2.21 eV. However, the indirect band gap increased from 1.6 to 1.94 eV when the annealing temperature increased from 200 up to 700℃ and remained almost the same for sample annealed at 800℃. The observed values of optical band gaps were in close agreement with the reported values. Our results indicated that the annealing would give rise to a good crystalline α -Fe2O3 nanoparticles with reduced strain.

Keywords


T.M. McCoy, P. Brown, J. Eastoe, R.F. Tabor, "Noncovalent magnetic control and reversible recovery of graphene oxide using iron oxide and magnetic surfactants", ACS Appl. Mater. Interfaces. 7 (2015) 2124–2133. doi:10.1021/am508565d.
 
[2]      P. Mallick, B.N. Dash, "X-ray Diffraction and UV-Visible Characterizations of α-Fe2O3 Nanoparticles Annealed at Different Temperature", Nanosci. Nanotechnol. 3 (2013) 130–134. doi:10.5923/j.nn.20130305.04.
[3]      M.F. Al-Kuhaili, M. Saleem, S.M.A. Durrani, "Optical properties of iron oxide (α-Fe2O3) thin films deposited by the reactive evaporation of iron", J. Alloys Compd. 521 (2012) 178–182. doi:10.1016/j.jallcom.2012.01.115.
[4]      M. Properties, S. "Characterization, Iron ( III ) Oxides from Thermal Processes Synthesis" , (2002) 969–982.
[5]      L. Canilha, A.K. Chandel, T. Suzane, F. Antunes, W. Luiz, M. Grac, A. Felipe, S. Silv, Bioconversion of Sugarcane Biomass into Ethanol : An Overview about Composition , Pretreatment Methods , Detoxification of Hydrolysates , Enzymatic Saccharification , and Ethanol Fermentation, 2012 (2012). doi:10.1155/2012/989572.
[6]      Catherine M. Aitchison , Reiner Sebastian Sprick , Andrew I. Cooper  ,"Emulsion polymerization derived organic photocatalysts for improved light-driven hydrogen evolution" ,11- 013, 128 (2007) 15721.
[7]      T. Ohmori, H. Takahashi, H. Mametsuka, E. Suzuki, "Photocatalytic oxygen evolution on a -Fe O Ðlms using Fe3 ‘ ion as a sacriÐcial oxidizing agent, (2000) 3519–3522.
[8]      X. Gou, G. Wang, J. Park, H. Liu, J. Yang, "Monodisperse hematite porous nanospheres: Synthesis, characterization, and applications for gas sensors", Nanotechnology. 19 (2008). doi:10.1088/0957-4484/19/12/125606.
[9]      H. Zhou, S.S. Wong, A Facile and Mild Synthesis of 1-D ZnO , 2 (n.d.).
[10]    D. Zitoun, N. Pinna, N. Frolet, C. Belin, L. Agre, "Single Crystal Manganese Oxide Multipods by Oriented Attachment", (2005) 15034–15035.
[11]    C. Wu, P. Yin, X. Zhu, C. Ouyang, Y. Xie, "Synthesis of Hematite ( r -Fe2O3 ) Nanorods : Diameter-Size and Shape Effects on Their Applications in Magnetism , Lithium Ion Battery , and Gas Sensors", (2006) 17806–17812. doi:10.1021/jp0633906.
[12]    K.J. Widder, A.E. Senyei, D.G. Scarpelli, D.G. Scarpelli, Experimental Biology and Medicine, (1978). doi:10.3181/00379727-158-40158.
[13]    G. Garçon, S. Garry, P. Gosset, F. Zerimech, A. Martin, M.H. Hannothiaux, P. Shirali, Benzo(a)pyrene-coated onto Fe2O3 particles-induced lung tissue injury: Role of free radicals, Cancer Lett. 167 (2001) 7–15. doi:10.1016/S0304-3835(01) 00474-8.
[14]    R. Lawaczeck, M. Menzel, H. Pietsch, Superparamagnetic iron oxide particles: Contrast media for magnetic resonance imaging, Appl. Organomet. Chem. 18 (2004) 506–513. doi:10.1002/aoc.753.
[15]    D. Walter, Characterization of synthetic hydrous hematite pigments, Thermochim. Acta. 445 (2006) 195–199. doi:10.1016/j.tca.2005.08.011.
[16]    M. Busch, M. Gruyters, H. Winter, Spin polarization and structure of thin iron oxide layers prepared by oxidation of Fe(110), Surf. Sci. 600 (2006) 4166–4169. doi:10.1016/j.susc.2006.01.140.
[17]    M.H. Key, B. Edwards, E.C. Harvey, G.J. Hirst, C.J. Hooker, A.K. Kidd, E.M. Madraszek, P.A. Rodgers, I.N. Ross, M.J. Shaw, M. Steyer, the brightness, B, (W cm2 sr1) is B =, 1397 (1990) 9–17.
[18]    A. Glisenti, C. Inorganica, M. Analitica, U.Ï. Padova, R. August, A. October, Interaction of formic acid with Fe O powders under di † erent atmospheres : an XPS and FTIR study, (1998).
[19]    H. Search, C. Journals, A. Contact, M. Iopscience, S.S. Phys, I.P. Address, Size-induced structural phase transitions and hyperfine properties of microcrystalline Fe , O , 2229 (1988).
[20]    K. Cheng, Y.P. He, Y.M. Miao, B.S. Zou, Y.G. Wang, T.H. Wang, Quantum Size Effect on Surface Photovoltage Spectra : Alpha-Fe2O3 Nanocrystals on the Surface of Monodispersed Silica Microsphere, (2006) 7259–7264.
[21]    S. Giri, S. Samanta, S. Maji, S. Ganguli, A. Bhaumik, Magnetic properties of a -Fe2O3 nanoparticle synthesized by a new hydrothermal method, 285 (2005) 296–302. doi:10.1016/j.jmmm.2004.08.007.
[22]    J. Lian, X. Duan, J. Ma, P. Peng, T. Kim, W. Zheng, Hematite ( a -Fe2 O3 ) with Various Morphologies: Ionic Liquid-Assisted Synthesis, Formation Mechanism, and Properties, 3 (2009) 3749–3761.
[23]    P. Taylor, A. Askarinejad, M. Bagherzadeh, A. Morsali, Sonochemical fabrication and catalytic properties of α-Fe2O3 nanoparticles, (2011) 37–41. doi:10.1080/17458080.2010.489583.
[24]    P. Sharma, S. Dhiman, S. Kumari, P. Rawat, C. Srivastava, Revisiting the physiochemical properties of Hematite ( α-Fe2O3 ) nanoparticle and exploring its bio-environmental application Revisiting the physiochemical properties of Hematite ( α -Fe2O3 ) nanoparticle and exploring its bio-environmental application, (2019).
[25]    S. Yang, X. Song, P. Zhang, J. Sun, L. Gao, Self-Assembled α -Fe2O3 Mesocrystals / Graphene Nanohybrid for Enhanced Electrochemical Capacitors, (2014) 2270–2279. doi:10.1002/smll.201303922.
[26]    G. Tong, J. Guan, Z. Xiao, X. Huang, Y. Guan, In situ generated gas bubble-assisted modulation of the morphologies, photocatalytic, and magnetic properties of ferric oxide nanostructures synthesized by thermal decomposition of iron nitrate, J. Nanoparticle Res. 12 (2010) 3025–3037. doi:10.1007/s11051-010-9897-2.
[27]    L. Lu, L. Li, X. Wang, G. Li, Understanding of the finite size effects on lattice vibrations and electronic transitions of nano α-Fe2O3, J. Phys. Chem. B. 109 (2005) 17151–17156. doi:10.1021/jp052780+.
[28]    Y. Lin, P.R. Abel, A. Heller, C.B. Mullins, α -Fe2O3 Nanorods as Anode Material for Lithium Ion Batteries, (2011) 2885–2891.
[29]    M. Mohammadikish, Hydrothermal synthesis , characterization and optical properties of ellipsoid shape α -Fe2 O3 nanocrystals, Ceram. Int. (2013) 1–8. doi:10.1016/j.ceramint.2013.07.016.
[30]    S. Cers, Preparation and characterization of CdTe thin films deposited by CSS, 37 (1995) 273–281.
[31]    M.S. Islam, J. Kurawaki, Y. Kusumoto, M.Z. Bin Mukhlish, P. Science, V. Science, Hydrothermal Novel Synthesis of Neck-structured Hyperthermia-suitable, (2012). doi:10.3329/jsr.v4i1.8727.
[32]    M.J. Prest, Q.T. Zhao, J.T. Muhonen, V.A. Shah, J.S. Richardson-Bullock, M. Prunnila, D. Gunnarsson, T.E. Whall, E.H.C. Parker, D.R. Leadley, Using platinum silicide as a superconductor for silicon electron coolers, ULIS 2013 14th Int. Conf. Ultim. Integr. Silicon, Inc. “Technology Brief. Day.” 75 (2013) 201–204. doi:10.1016/j.mssp.2017.12.003.
[33]    N. Özer, F. Tepehan, Optical and electrochemical characteristics of sol-gel deposited iron oxide films., Sol. Energy Mater. Sol. Cells. 56 (1998) 141. doi:10.1016/S0927-0248(98)00152-4.
[34]    M. Gartner, M. Crisan, A. Jitianu, R. Scurtu, R. Gavrila, I. Oprea, M. Zaharescu, Spectroellipsometric characterization of multilayer sol-gel Fe2O3films, J. Sol-Gel Sci. Technol. 26 (2003) 745–748. doi:10.1023/A:1020706423230.
[35]    A.A. Akl, Optical properties of crystalline and non-crystalline iron oxide thin films deposited by spray pyrolysis, Appl. Surf. Sci. 233 (2004) 307–319. doi:10.1016/j.apsusc.2004.03.263.
[36]    L. Dghoughi, B. Elidrissi, C. Bernède, M. Addou, M.A. Lamrani, M. Regragui, H. Erguig, Physico-chemical, optical and electrochemical properties of iron oxide thin films prepared by spray pyrolysis, Appl. Surf. Sci. 253 (2006) 1823–1829. doi:10.1016/j.apsusc.2006.03.021.
[37]    M. Zhang, W. Luo, Z. Li, T. Yu, Z. Zou, Improved photoelectrochemical responses of Si and Ti codoped α-Fe2O3photoanode films, Appl. Phys. Lett. 97 (2010) 4–7. doi:10.1063/1.3470109.
[38]    H. Zhang, A. Xie, C. Wang, H. Wang, Y. Shen, X. Tian, Novel rGO/α-Fe2O3 composite hydrogel: Synthesis, characterization and high performance of electromagnetic wave absorption, J. Mater. Chem. A. 1 (2013) 8547–8552. doi:10.1039/c3ta11278k.
[39]    W. Xiao, Z. Wang, H. Guo, X. Li, J. Wang, S. Huang, L. Gan, Fe2O3particles enwrapped by graphene with excellent cyclability and rate capability as anode materials for lithium ion batteries, Appl. Surf. Sci. 266 (2013) 148–154. doi:10.1016/j.apsusc.2012.11.118.
[40]    F. Cheng, K. Huang, S. Liu, J. Liu, R. Deng, Surfactant carbonization to synthesize pseudocubic α-Fe2O3/C nanocomposite and its electrochemical performance in lithium-ion batteries, Electrochim. Acta. 56 (2011) 5593–5598. doi:10.1016/j.electacta.2011.04.002.
[41]    A.M. El Sayed, S. Taha, G. Said, F. Yakuphanoglu, Superlattices and Microstructures Controlling the structural and optical properties of nanostructured ZnO thin films by cadmium content, SUPERLATTICES Microstruct. 65(2014)35–47. doi:10.1016/j.spmi.2013.10.041.
[42]    A.M. El Sayed, W.M. Morsi, S. Mahrous, A. Hassen, Properties of Polyvinyl Chloride / Cadmium Oxide Nanocomposite Films, (2014). doi:10.1002/pc.
[43]    M. Sorescu, R.A. Brand, D. Mihaila-Tarabasanu, L. Diamandescu, The crucial role of particle morphology in the magnetic properties of haematite, J. Appl. Phys. 85 (1999) 5546–5548. doi:10.1063/1.369890.