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Abstract:  

The asymptotic iteration method (AIM) has been applied to calculate the ground state 

and binding energy of an impurity located at the center of a single and multilayered spherical 

quantum dot.Regarding the single quantum dot (QD) the results obtained for the ground state 

energy and for the first approximation of the binding energy agree entirely with the results of the 

ordinary perturbation technique obtained in earlier treatments. 

Besides, the second approximation of the binding energy differs by about 16.5 % in 

both treatments which is quite reasonable. 

The results obtained in the case of multilayered spherical quantum dot (MSQD) showed 

a reasonable quantitative agreement with the results obtained in an earlier treatment by applying 

an entire numerical technique. They are also distinguished by exhibiting a peak similar to the 

results obtained before by applying the variational method in analogous problems.         

Keywords: Asymptotic iteration method, Single and multilayered quantum dots, Parabolic 

confining potential, Central impurity, Ground energy state. 

1. Introduction 

The exact solutions of the Schrödinger equation can be derived for very few problems of 

specific forms of confining potential. In most of the cases approximate analytical and numerical 

techniques have to be applied to obtain the solution. The well known approximate techniques are 

the first and second order perturbation theory, the strong perturbation technique and the variational 

method. Also, the asymptotic iteration method has been applied more recently. 
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The perturbation technique has been employed by Bose [1], Xie [2] and Yuan and Liu [3] 

to determine an electron binding energy in a spherical quantum dot with a parabolic confining 

potential. On the other hand, the variational method has been applied with different forms of the 

trial wave function. Zhu and Chen [4] used a trial wave function in the form of linear expansion 

where the coefficients have been taken as the variational parameters. Alternative forms for the trial 

wave functions were employed in Wang and Yang [5], Merchancano et al [6] and Mikhail and 

Ismail [7]. Mikhail and El Sayed [8, 9] have derived analytical expressions for the energy 

expectation value and for the binding energy of central and off - central impurities. 

The strong perturbation technique was introduced originally by Jiang [10] and was 

applied for the calculation of the binding energy of a central impurity in a quantum dot by Kassim 

[11]. Mikhail and Ismail [12] investigated the variational and strong perturbation techniques and 

showed that the variational method leads to better results and is accordingly more powerful. 

The asymptotic iteration method (AIM) deals with a more complicated confining 

potential that consists of three terms. The first term represents the coulomb potential due to a 

central impurity, the second term stands for a linear potential while the third term represents the 

parabolic confining potential which is the familiar term used in most of the previous studies. The 

method was originally introduced by Ciftci et al [13], [14], [15] and was applied by Barkat [16]. 

More recent applications have been performed by Ismail, Saad and his coworkers [17, 18, 19, 20, 

21].  

Also, it may be worthwhile pointing out that the asymptotic iteration method can be 

applied in many other branches of applied mathematics and theoretical physics such as quantum 

optics (Makram-Allah et al [22]) and stability of dynamical systems (Hamza et al [23]).  

The aim of the present work is to investigate further the asymptotic iteration method 

(AIM) to calculate the ground state and binding energy of an impurity located at the center of a 

single and multilayered spherical quantum dots. In section 2 a comparison has been made between 

the results of the perturbation and asymptotic iteration methods. The results of the ground state 

energy and the first perturbation obtained from the two methods agree entirely while the results of 

the second approximation differ by about 16.5 % which is a very reasonable result. Moreover, the 
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result obtained by using the asymptotic iteration method is the lower one. This indicates that it is 

much nearer to the exact negative result since it represents a better lower bound.  

In section 3 the asymptotic expansion method has been applied to obtain the solution of 

the Schrödinger equation in the dot regions of a multilayered spherical structure where the 

confining potential has been taken in complicated parabolic forms.  

Section 4 has been devoted to perform a comparison between the results obtained in the 

present work and the result of the entirely numerical technique used in Akgül et al [24]. The 

comparison indicated that the present results are very reasonable. They are distinguished by 

exhibiting a peak similar to the results obtained before by applying a variational method in 

analogous problems (Mikhail and Ismail [7, 25] and Mikhail and El Sayed [8, 9]). 

2. Asymptotic Iteration Method  

In this section we deal with the asymptotic iteration method (AIM) which was originally 

introduced by Ciftci et al ([13], [14], [15]) and was applied in Barakat [16] to find a solution for 

the Schrödinger equation with potential   

𝑉(𝑟) = −
𝑍

𝑟
+ 𝑔 𝑟 + 𝜆 𝑟2  ,                                                                                               (1)                                                      

where 𝑔, 𝑍, 𝜆 are arbitrary and r is the electron position vector. The Schrödinger equation in 

spherical polar coordinates is given  

𝑠𝑖𝑛2𝜃

𝑅
 
𝑑

𝑑𝑟
 𝑟2  

𝑑 𝑅

𝑑 𝑟
+ 

𝑠𝑖𝑛 𝜃

𝛩
 
𝑑

𝑑𝜃
 𝑠𝑖𝑛 𝜃  

𝑑𝛩

𝑑𝜃
+ 

1

𝜙
 
𝑑2𝜙

𝑑 𝜑2
− 

2 𝑚∗ 𝑟2𝑠𝑖𝑛2𝜃  

ħ
2  (𝑉(𝑟) −  𝐸) =  0.           (2) 

If we further take, 

𝑅 =
𝑥

𝑟
 ,                                                                                                                                (3)                                   

and substitute in Eq. (2) it can be shown after using the Rydberg and Bohr radius units that 

−
𝑑2𝑥

𝑑𝑟2
+

1

𝑟2
 ℓ(ℓ+ 1)𝑥 + 𝑉 𝑥 = 𝐸 𝑥.                                                                                  (4)                               

The transformations 

𝑟 = 𝑢2 , 𝑥 = 𝜙(𝑢)𝑒−𝑃(𝑢)/2  ,    𝑃  ̀ (𝑢) =
−1

𝑢
 ,                                                                   (5)                           
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leads, in turn to 

𝑑2𝜙

𝑑𝑢2
− [

ℓ̀ (ℓ̀+1)

𝑢2
+ 4 𝑔𝑢4 + 4 𝜆𝑢6 − 4 𝑍 − 4 𝐸 𝑢2] 𝜙 = 0 ,                                                 (6)                              

where 

ℓ̀ (ℓ̀+ 1) = 4 ℓ(ℓ+ 1) +
3

4
 .                                                                                              (7)                               

Finally, 𝜙(𝑢) can be changed to f(u) by using the transformation  

𝜙(𝑢) = 𝑢ℓ̀+1 𝑒−𝛼𝑢
4/4 𝑓(𝑢) , 𝛼2 = 4 𝜆  .                                                                           (8)                               

It can consequently be shown after some manipulations that  

𝑓̀̀ = 𝜆0 𝑓̀ + 𝑆0𝑓 ,                                                                                                                (9)                                               

where, 

𝜆0 = 2(𝛼 𝑢
3 −

ℓ̀+1

𝑢
) ,                                                                                                   (10 a)                               

𝑆0 = (− εnℓ 𝑢
2 + 4 𝛾̃(𝑔 𝑢4 − 𝑍)) ,                                                                             (10 b)                                       

𝜀𝑛ℓ = 4 𝐸 − (2 ℓ̀+ 5)𝛼 .                                                                                              (10 c)                                    

In Eq. (10 b) 𝛾̃ is artificially introduced perturbation expansion parameter to be equal to 1 at the 

end of the calculation. 

Now, within the framework of AIM (Refs. [13], [14], [15]) we apply a mathematical 

induction procedure to prove by successively differentiating Eq. (9) that 

f (n+2) = 𝜆𝑛(𝑢) 𝑓̀ + 𝑆𝑛(𝑢)𝑓  , 𝑛 = 0,1,2,…                                                                    (11)                                           

where 

𝜆𝑛 = 𝜆̀𝑛−1 + 𝑆𝑛−1 + 𝜆0𝜆𝑛−1  ,                                                                                     (12 a)                                         

and 

𝑆𝑛 = 𝜆𝑛−1𝑆0 + 𝑆̀𝑛−1 .                                                                                                   (12 b)                                       

It then, follows from Eqs. (11), (12 a, b) that  
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𝑑

𝑑𝑢
ln 𝑓(𝑛+1) =

𝑓(𝑛+2)

𝑓(𝑛+1)
=

𝜆𝑛(𝑓̀+
𝑆𝑛
𝜆𝑛
𝑓)

𝜆𝑛−1(𝑓̀+
𝑆𝑛−1
𝜆𝑛−1

𝑓)
 .                                                                           (13)                                          

We now introduce the “asymptotic” aspect of the method that implies for some 𝑛〉0 

𝑆𝑛

𝜆𝑛
=

𝑆𝑛−1

𝜆𝑛−1
= 𝜌(𝑢, 𝛾̃) .                                                                                                       (14)                                                   

Substitution from Eq. (14) in Eq. (13) gives 

𝑑

𝑑𝑢
ln( 𝑓(𝑛+1)) =

𝜆𝑛(𝑓̀+𝜌𝑓)

𝜆𝑛−1(𝑓̀+𝜌𝑓)
=

𝜆𝑛

𝜆𝑛−1
 ,                                                                               (15)                                              

which yields 

𝑓(𝑛+1)(𝑢) = 𝐶1 exp [∫ (
𝜆`𝑛−1(𝑡)

𝜆𝑛−1(𝑡)
+

𝑆𝑛−1(𝑡)

𝜆𝑛−1(𝑡)
+ 𝜆0(𝑡)

𝑢
)𝑑𝑡]  

                   = 𝐶1𝜆𝑛−1(𝑢)𝑒𝑥𝑝(∫ (𝜌 + 𝜆0)𝑑𝑡)
𝑢

 .                                                                (16)                                                    

We then replace n by (n+1) in Eq. (16) and use Eqs. (11), (14) to find  

𝑓̀ + 𝜌𝑓 = 𝐶1 exp( ∫ (𝜌 +
𝑢

𝜆0)𝑑𝑡) ,                                                                                 (17)                                                

        The basic achievement of the previous calculations is the replacement of the second order 

differential equation (9) by the first order linear differential equation (17). The latter can then be 

solved by multiplying both sides of the equation by an integrating factor  𝑒∫ 𝜌 𝑑𝑡
𝑢

 . It can be shown 

that 

𝑑

𝑑𝑡
(𝑓(𝑢) 𝑒∫ 𝜌(𝑡,𝛾̃)𝑑𝑡

𝑢

 ) = 𝑄(𝑢) 𝑒∫ 𝜌(𝑡,𝛾̃)𝑑𝑡
𝑢

  ,                                                                    (18)                                              

where 

𝑄(𝑢) = 𝐶1 exp (∫ (𝜌 + 𝜆0)𝑑𝑡
𝑢

) .                                                                                    (19)                                   

Thus by integrating Eq. (18) with respect to u we find 

𝑓(𝑢) = exp(−∫ 𝜌 𝑑𝑡
𝑢

) [𝐶2 + 𝐶1 ∫ exp (
𝑢

∫ (𝜆0(𝜏) + 2𝜌(𝜏))𝑑𝜏)
𝑡

𝑑𝑡].                        (20)                                         

Moreover, in the AIM (asymptotic iteration method) we define 
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𝛿𝑘(𝑢, 𝛾̃) ≡ 𝑆kλk+1 − Sk+1λk ≡ 0 .                                                                                 (21)                                                 

If we expand 𝛿𝑘(𝑢, 𝛾̃) around 𝛾̃ = 0 we get the following series 

𝛿𝑘(𝑢, 𝛾̃) = 𝛿𝑘(𝑢, 0) +
𝛾̃

1!

𝜕𝛿𝑘(𝑢,𝛾̃)

𝜕𝛾̃
|
𝛾̃=0

+
𝛾̃2

2!

𝜕2𝛿𝑘

𝜕𝛾̃2
|
𝛾̃=0

+
𝛾̃3

3!

𝜕3𝛿𝑘

𝜕𝛾̃3
|
𝛾̃=0

+⋯ .                        (22)                                 

According to the procedure of AIM, 𝛿𝑘(𝑢, 𝛾̃)must be zero; if this to be true for every 𝛾̃ value, then 

every term of the series must be zero. That is to say 

𝛿𝑘
(𝑗)(𝑢, 𝛾̃) =

𝛾̃𝑗

𝑗!

𝜕𝑗𝛿(𝑢,𝛾̃)

𝜕𝛾̃𝑗
|
𝛾̃=0

= 0 ,     𝑗 = 0,1,2,…  .                                                          (23)                                                        

Up to this point, it is also convenient to expand 𝜀𝑛ℓ , 

𝜀𝑛ℓ = 𝜀𝑛ℓ
(0)
+ 𝛾̃𝜀𝑛ℓ

(1)
+ 𝛾̃2𝜀𝑛ℓ

(2)
+ 𝛾̃3𝜀𝑛ℓ

(3)
+ 𝛾̃4𝜀𝑛ℓ

(4)
+⋯ .                                                    (24)                                              

A quantitative estimate for 𝜀𝑛ℓ expansion terms can be obtained by comparing the terms 

with the same order of 𝛾̃ in Eqs. (22) and (24). Therefore, it is clear that the roots of 𝛿𝑘
(0)(𝑢, 𝛾) = 0 

give us the leading contribution energy terms 𝜀𝑛ℓ
(0)

. Likewise, the roots of 𝛿𝑘
(1)(𝑢, 𝛾) = 0 gives us 

the first correction terms to 𝜀𝑛ℓ
(1)

and so on. Accordingly, the general solution for the eigenenergies 

𝐸𝑛ℓin conjunction with Eq.(10 c) is 

𝐸𝑛ℓ =
1

4
((2ℓ̀+ 5)𝛼 + 𝜀𝑛ℓ

(0) + 𝛾̃𝜀𝑛ℓ
(1) + 𝛾̃2𝜀𝑛ℓ

(2) + 𝛾̃3𝜀𝑛ℓ
(3) + 𝛾̃4𝜀𝑛ℓ

(4) +⋯).                        (25)                     

To obtain the leading energy term  𝜀𝑛ℓ
(0)

 , one should simply switch off 𝛾̃ in Eq. (9), which 

will lead to an exactly solvable eigenvalue problem within the framework of AIM  

𝑓̀̀(𝑢) = 2 (𝛼𝑢3 −
(ℓ̀+1)

𝑢
) 𝑓̀(𝑢) − 𝜀𝑛ℓ 𝑢

2 𝑓𝑛ℓ(𝑢)    .                                                          (26)                                               

In general the choice of u is critical to speed the convergence of the method. Thus 

following Barakat [16] we choose 𝑢𝑐 = (
ℓ̀+1

𝛼
)
1
4⁄  . This implies that the function  

𝜙(𝑢)

𝑓(𝑢)
=

𝑢ℓ̀+1 𝑒−𝛼𝑢
4/4  in Eq. (8) is extremum. Moreover  𝜆0 = 0 𝑎𝑡 𝑢 = 𝑢𝑐         
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A mathematica programme has been prepared to calculate 𝛿𝑘
(0,1,2)(𝑢, 𝛾̃) up to a 

sufficiently high accuracy. The three equations 

𝛿𝑘
(0,1,2)(𝑢𝑐, 0) = 0 ,                                                                                                         (27)               

have then been solved for 

 𝜆 =
1

2

𝑚∗𝜔0
2𝑎∗

2

𝑅∗
= 𝛾2,   𝑍 = 2, 𝑔 = 0  .                                                                          (28)             

It has been found that  

𝜀(0) = 0 ,    𝜀(1) = −7.449 ,    𝜀(2) = −1.247 .                                                               (29)           

The above results lead to 

𝐸(0) =
1

4
(2ℓ ̀ + 5)𝛼,    𝐸(1) =

𝜀(1)

4
= −1.8622 ,     𝐸(2) =

𝜀(2)

4
= −0.3117                       (30) 

Moreover, it follows from Eqs. (7), (8) that 

ℓ = 0,    ℓ̀ =
1

2
 ,    𝛼 = 2√𝜆 = 2𝛾,                                                                                    (31)            

the first of Eq. (32) together with Eq. (33) give  

𝐸(0) = 3γ = 2.0427 .                                                                                                      (32)                                                  

The results obtained in (30), (32) for 𝐸(0) ,   𝐸(1)agree entirely with those found by 

applying the ordinary time independent perturbation theory. This theory also implies that the 

second approximation 𝐸(2) = −0.2601 . Thus, the value of 𝐸(2)given in Eq. (30) differs from this 

value by about 16.5 %. 

3. A Detailed Investigation of a Multilayered Spherical Quantum Dot with a Parabolic 

Confinement  

In this section we reconsider the problem of multilayered spherical quantum dot with a 

parabolic confining potential in the core and well layers which was originally introduced in Akgűl 

et al [24]. The investigation is performed in the absence and presence of impurity. An analytical 

approach is applied to obtain the solution unlike Akgűl et al [24] where the solution was retrieved 
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entirely by utilizing a numerical treatment that depends on the shooting and finite difference 

methods.  

The confining potential in the different regions of the multilayered structure is given by  

𝑉𝑛(𝑟) =

{
 
 

 
  

𝑉0

𝑅1
2 𝑟

2                                           , 0 < 𝑟 < 𝑅1                 ,              

𝑉0                                                  , 𝑅1 < 𝑟 < 𝑅2               ,             
𝑉0

(𝑅2−𝑎)2
(𝑟 − 𝑎)2                          , 𝑅2 < 𝑟 < 𝑅3              ,             

𝑉0                                                   ,          𝑟 > 𝑅3               ,            

                           (33)                                

where 𝑎 = (𝑅2 + 𝑅3) 2 ⁄ . Also, the coulomb potential due to a central impurity is defined by  

𝑉𝑐 =
− 𝑒2

4 𝜋𝜀𝑟
=

−2

𝑟
 .                                                                                                              (34)                                     

The second result is defined in the Rydberg and Bohr radius units. 

In the case of spherical symmetry the eigenfunctions of the Schrödinger equation can be 

expressed as   𝜓(𝑟, 𝜃, 𝜙) = 𝐶 𝑌ℓ𝑚(𝜃, 𝜙)𝑅(𝑟), where 𝑅(𝑟) is the solution of the radial Schrödinger 

equation that is given in Rydberg and Bohr radius units by  

[
d2

dr2
+
2

r

d

dr
−

ℓ(ℓ+1)

r2
] R = −(E − V)R ,                                                                             (35)                                 

the potential 𝑉(𝑟) in Eq. (35) is defined as 𝑉𝑛 and 𝑉𝑛 + 𝑉𝑐 in the absence and presence of impurity 

respectively. We then take  

R(r) =
X(r)

r
 ,                                                                                                                     (36)                                    

to find  

[
d2

dr2
−

ℓ(ℓ+1)

r2
] X = −(E − V)X .                                                                                        (37)                                            

For the ground state ℓ = 0 and accordingly Eq. (37) takes the form  

d2X

dr2
= −(E − V)X .                                                                                                          (38)                                
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We now proceed to consider the solution of Eq. (38) in the different regions of the 

multilayered. We start by the case in which the impurity is absent. In the first region (0 < 𝑟 < 𝑅1) 

the potential is parabolic and consequently the solution is given by  

ψ
1
(0)(r) = A e−γ1r

2 2⁄  1F1(−n,
3

2
, γ
1
 r2) ,                                                                         (39)                                         

where 

γ
1
=

√V0

R1
,  ħω1 = 2γ

1
,  n =

E

4γ
−
3

4
 ,                                                                              (40 a)                 

and the superscript (0) refers to the case in the absence of impurity. In Eq. (39) we preferred to 

use the hypergeometric function 1𝐹1 instead of Laguerre polynomial. They are related by the 

relation (Bell [26]) 

1F1(−n,α + 1, ξ) = Ln
α (ξ)

n! α!

(n+α)!
 .                                                                                (40 b)                                   

Also in regions 2 and 4 (𝑅1 < 𝑟 < 𝑅2 , 𝑟 > 𝑅3) , 𝑉(𝑟) = 𝑉0 . 

Accordingly  

ψ
2

(0)
= B 

eβr

r
+ C 

e−βr

r
 ,                                                                                                     (41)                                      

ψ
4

(0)
= D 

e−βr

r
 ,                                                                                                                 (42)                                       

where 

β = √V0 − E .                                                                                                                  (43)                                   

Finally, in region 3 the confining potential can be expressed as 

Vn =
V0 

(R2−a)2
 (r2 − 2ar + a2) .                                                                                       (44)                                              

We thus apply the asymptotic iteration method (AIM) which has been discussed in section 2. The 

values of the parameters 𝑍, 𝑔, 𝜆 can be taken as  

Z = 0,        λ =
V0 

(R2−a)2
 ,        g =

−2aV0

(R2−a)2
 .                                                                         (45)                             
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The last term in Eq. (44) can be included in the energy term. We, in turn, define 

E    ̀ = E −
a2 V0

(R2−a)2
 .                                                                                                          (46)                               

Moreover 

α = 2√λ   , ℓ̀(ℓ̀+ 1) = 4ℓ(ℓ+ 1) +
3

4
=

3

4
 ,        ℓ̀ =

1

2
 .                                                   (47)                                           

Also, it can be shown from Eqs. (2), (8), (20) that 

ψ
3

(0)(r) = e−√λr2/2 f(u),      u2 = r ,                                                                                   (48)                                        

where 

f(u) = e
−∫ ρ(ù)dù

u

u2  [f(u2) + F(u2) ∫ exp{∫ (λ0(ù̀) + 2ρ(ù̀))dù̀
ù

u2
}

u

u2
dù] ,                           (49)                                

𝑓(𝑢2),   𝐹(𝑢2)  are constants which have to be determined and 𝑢2 = √𝑅2 . Moreover it can be 

shown from Eqs. (48), (17) that  

dψ
3

(0)
(r)

dr
= −r√λψ

3

(0)(r) + e−√λr2/2 df

du

1

2u
 ,                                                                            (50)                                    

where 

df

du
= f̀(u) = F(u) − ρ(u)f(u) =  F(u2) e

∫ (λ0(ù)+ρ(ù))dù
u

u2 − ρ(u)f(u).                               (51)                                 

Eqs. (50),  (51) imply that  

dψ
3

(0)
(r)

dr
= −(r√λ+

ρ(u)

2u
) ψ

3

(0)(r) +
F(u2)

2u
 e−√λr2/2 e

∫ (λ0(ù)+ρ(ù))dù
u

√R2 .                                (52)                                 

The boundary conditions necessitate that  

ψ
i

(0)(Ri) = ψ
i+1

(0) (Ri),     i = 1,2,3  

(
dψ

i

(0)

dr
)r=Ri

= (
dψ

i+1

(0)

dr
)r=Ri

 ,         i = 1,2,3 ,                                                                          (53)                               

which are sufficient to determine the constants 𝐵, 𝐶, 𝐷, 𝑓(𝑢2), 𝐹(𝑢2) in terms of 𝐴 which can be 

taken equal to unity or determined from the normalization condition.  
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Now in the presence of a central impurity, we have to apply the (AIM) with 𝑍 = 2 in 

regions 1 and 3 . For region 1 we take  

Z = 2 ,     λ =
V0

R1
2  ,      g = 0 .                                                                                           (54)                                     

Accordingly  

ψ
1
(r) = e−√λr2/2 f1(u) ,                                                                                                   (55)                                        

where 

f1(u) = e
−∫ ρ(ù)du

u

u1 [f1(u1) + F1(u1) ∫ exp (∫ {λ0(ù̀) + 2ρ(ù̀)}dù̀
ù

u1
) dù

u

u1
].                      (56)                               

Also, ψ
1
(0) = 0 and hence  

F1(u1) =
f1(u1)

∫ exp[− ∫ {λ0(ù̀)+2ρ(ù̀)}dù̀
u1
ù

]dù
u1
0

 .                                                                              (57)                               

It then, follows that 

(
dψ1

dr
)R1

= ψ
1
(R1){−R1√λ+

1

2u1
[−ρ(u1) +

1

∫ exp(−∫ (λ0(ù̀)+2ρ(ù̀))dù̀
u1
ù

)dù
u1
0

]}.                       (58)                             

Regarding region 3, we apply the (AIM) with 𝑍 = 2 and the other parameters as defined 

by Eq. (45). Also È and  𝜓3(𝑟) will be defined in a similar manner as Eqs. (46) and (48) 

respectively.  

In regions 2 and 4, the results of Mikhail and El Sayed [27] for a central impurity with 

constant confining potential will be applied. Accordingly, 

ψ
2
(r) = e−ρ̃/2[B̀ 1F1(1− λ̃, 2, ρ̃) + C̀ U(1− λ̃, 2, ρ̃)] ,                                                   (59)                                           

and  

ψ
4
(r) = D̀e−ρ̃/2U(1− λ̃, 2, ρ̃)   ,                                                                                      (60)                                                   

where 

ρ̃ = γ̃r ,      γ̃ = 2√V0 − E ,       λ̃ =
2

γ̃
=

1

√V0−E
 .                                                               (61)                                             
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The boundary conditions in this case are equivalent to Eqs. (53) but with the superscript 

(0) being dropped. The resulting equations will give the values of 𝐵̀, 𝐶̀, 𝐷̀, 𝑓(𝑢2), 𝐹(𝑢2) in terms 

of 𝑓1(𝑢1) which can be taken equal to one or has to be calculated from the normalization condition. 

Here, the constants 𝑓(𝑢2), 𝐹(𝑢2) should take new values owing to the new value of the 

parameter 𝑍 (𝑍 = 2). 

4. Numerical Calculations 

The multilayered quantum dot considered here is composed of two Ga As dots, the one 

within the other. They are defined by the parabolic electronic potentials. Also, they are separated 

by 𝐺𝑎1−𝑥 𝐴𝑙𝑥 𝐴𝑠 layers that build finite potential barriers (𝑉0) in between the dots and outside the 

whole system. Here, the subscript x represents the Aluminum (Al) concentration and accordingly 

it takes a value between 0 and 1. The confining potentials are given by Eq. (33). The inner dot is 

of radius 𝑅1  while the outside dot has the inner radius 𝑅2  and outer radius  𝑅3  . The thickness of 

the outside dot and the barrier between the dots are 

Tw = R3 − R2  and   Ts = R2 − R1.                                                                                (62) 

The input parameters are taken from Casey [28] and Adachi [29]. They are given by  

m∗ = 0.067 m0,   ∈= 13.18 ϵ0,   R∗ = 5.8 mev and  a∗ = 100 A0 ,                                 (63)                                       

where 𝑚0 is the bare mass of the electron and 𝜖0 is the dielectric constant of free space. Following 

Akgül et al [24] we further take  

V0 = 225 mev ,   Ts = 0.2 a
∗ .                                                                                         (64)                                                                         

 For the ground state (0s) we take 𝑙 = 0. The results obtained in the absence and presence of 

impurity are shown in Figs. (1), (2) for 𝑇𝑤 = 0.6 𝑎∗ and 0.4 𝑎∗ respectively. The comparison 

with the corresponding results of Akgül et al [24] showed a reasonable agreement.  

We have preferred here to restrict ourselves to the ground state (I=0). We found that this 

is enough to compare the results with those obtained in Akgül et al [24] by using an entirely 

numerical technique. The other excited states will be considered in a separate article where the 
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results obtained by applying the (AIM) will be compared with those obtained by applying the 

variational method and other numerical techniques.       

 

Fig. 1: Graph of the energy ground states (𝐸1,𝐸2) (L=0) against 𝑅1 for 𝑇𝑤 = 0.4 𝑎∗. Here 𝐸1, 𝐸2 

are the energies in absence and presence of impurity. 

 

Fig. 2: Plot of the energy ground states (𝐸1,𝐸2) (L=0) versus 𝑅1 for 𝑇𝑤 = 0.6 𝑎
∗. 
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5. Conclusion  

The importance of the asymptotic iteration method in determining the binding energy of a central 

impurity in both single and multilayered quantum dots has been emphasized. To the best of our 

knowledge this method has not been employed anywhere before to determine the impurity binding 

energy. In a single quantum dot subject to a parabolic confining potential this method has led to a 

result which agrees entirely with the result of the time independent perturbation technique up to 

the first approximation. Also, in a multilayered spherical quantum dot (MSQD) subject to a very 

complicated parabolic potential in the different regions the results obtained from the (AIM) 

showed reasonable agreement with the results obtained by using entirely numerical techniques. 
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ص العربى الملخ  

الطبقات والمتعددة المنفردة الكمية النقاط في التقاربية التكرار طريقة  

 هبة صبري فهيم1,  أ.د.ابراهيم فهمى ابراهيم ميخائيل2

 ةمصر، القاهر - شمسجامعة عين  - كلية البنات للأداب والعلوم والتربية -قسم الرياضيات  1

  مصر، القاهرة  - جامعة عين شمس - كلية العلوم - قسم الرياضيات –أستاذ متفرغ   2

العربىملخص ال  

استخدمت طريقة التقارب التكرارية التي لم تستخدم من قبل لحساب طاقة الترابط للشائبة. ولقد اعطت هذه الطريقة تطابق        

 16.5بالنسبة للشائبة المركزية حتى التقريب الاول بينما يختلف التقريب الثاني للطريقتين بحوالي مع نتائج نظرية الاضطراب 

  .% وهذه نتيجة منطقية

كما تم تطبيق طريقة التقارب التكرارية لحساب طاقة الارتباط لشائبة مركزية في نقطة مادية متعددة الطبقات في وجود         

  .قطع المكافئ وتختلف من طبقة الى اخرىجهد محدد على صورة معقدة لل

قد اعطت الطريقة نتائج تتفق الى حد كبير مع النتائج التي تم الحصول عليها لآخرين باستخدام الطرق العددية . ولذلك         

محدد  فقد  اظهرت الدراسة الحالية اهمية طريقة التقارب التكرارية في حل معادلة شرودنجر النصف قطرية في وجود جهد

            .معقد

كما تم حساب طاقة الارتباط لشائبة مركزية او لا مركزية موضوعة في نقطة كمية كروية باستخدام نظرية الاضطراب .        

 . كما تم دراسة طريقة التقارب التكرارية . ولقد تم تطبيق الطريقتين لحساب مستوى الطاقة في وجود شائبة مركزية

سة الشائبة المركزية في نقطة كمية كروية متعددة الطبقات في وجود جهد محدد على صورة معقدة للقطع كما تم درا      

 . المكافئ بحيث تختلف من منطقة الى اخرى . ولقد تم بنجاح

 

 

 


