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Abstract

This paper estimates the Higgs boson production and its decay into muon-antimuon pairs
(ut+p—) at 14 TeV center of mass energy of proton-proton collisions in the High Luminosity
Large Hadron Collider (HL-LHC) era, assuming integrated luminosities of 0.3 ab™ and 3 ab™.
The events in this study were generated using Monte Carlo tools, MadGraph5_aMC@NLO.
The simulation of hadronization, fragmentation, Initial State Radiation (ISR) and Final State
Radiation (FSR) processes was performed using Pythia8. The simulation of the detector was
done using DELPHES. According to the most recent ATLAS and CMS measurements, the
mass of the Higgs boson was assumed to be 125.35 GeV. The expected number of collision
events were calculated for the SM Higgs and all Standard Model processes that give two muons

in the final state. An estimate for the size of data needed for observing the Higgs boson in the
above channel is also calculated.

Keywords: SM, Higgs boson, HL- LHC, CMS, ATLAS.
1. Introduction

In particle physics all measurements of High Energy Physics (HEP) experiments are in
consistency with the Standard Model (SM) at a very high degree of precision. The Higgs boson
discovery in 2012 by CMS and ATLAS experiments at CERN, is a major milestone in
elementary particle physics. It confirms the so-called Brout-Englert-Higgs (BEH) mechanism
and provides evidence for the SM [1-3]. In the SM, the Electroweak (EW) symmetry could be
broken via the BEH mechanism that generates masses for the W=, W*, and Z gauge bosons (the
mediators of the weak force), while leaving the photon (the electromagnetic force carrier)
massless. The BEH is the mechanism through which the SM matter particles get their observed
masses [4-7]. According to the CMS and ATLAS latest mass measurements, the Higgs boson
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has a mass of 125.35 £ 0.1 (statistical) + 0.15 (systematics) GeV and has properties as predicted
by the SM [8-10].

The HL-LHC can measure the Higgs boson decays modes to fermion-antifermion, like
top-antitop (tt), bottom-antibottom (bb), tau-antitau leptons (t"t*), and muon-antimuon (p ")
with Branching Ratios (BR) that depend on the squares of the masses of the corresponding
fermion. For a Higgs boson mass (mu) of 125.35 GeV, the SM BR of the Higgs decay into a
pair of muons is 2.172 x 10~#[11, 12]. Despite this very small BR (due to the small coupling
between Higgs and a light fermion like muon), the Higgs decay to two muons is a very clean
channel [13]. It allows us to measure the coupling of the Higgs to second-generation fermions,
and could be used as a tool to probe Physics Beyond Standard Model (BSM). Searches for
heavy particles decaying into two heavy vector bosons (WW or ZZ) and for Higgs decays into
two muons are among the most sensitive probes of BSM physics. The signal Feynman diagram
is shown in Fig. 1, where the (H) boson is produced via the dominant production mechanism
gluon-gluon fusion (ggF). The SM dimuon production via Z-boson or virtual photon (y*) (the
so-called Drell-Yan, DY), Z/y* — p'u, is the dominant irreducible background that has
production cross-section times BR approximately three orders of magnitude higher than that

expected from the Higgs boson. For the above reasons, we explore the Higgs boson decay to
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Fig.1.png. Feynman diagram of the Higgs boson produced via gg-Fusion and then decays into
dimuons.

2. Samples Preparation and Simulations

The Signal and the SM backgrounds samples were generated using the matrix element
generator, MadGraph5. Because quark confinement [14, 15] the hadronization process is
necessary, it was done using Pythia8 [16]. Also, the so-called the Final and the Initial State

Radiations (FSR and ISR) resulting from Electroweak (EW) and Quantum Chromodynamics
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(QCD) processes, were simulated using Pythia8. The DELPHES fast detector simulator [17]

was used to simulate the detector response. In our simulation, a detector configuration similar
to that of the Compact Muon Solenoid detector (CMS) at the High Luminosity Large Hadron
Collider (HL-LHC) was assumed.

In this paper, the term "signal” refers to the Higgs boson that decay to a pair of muons,
while the term "background” refers to other standard model processes; DY, diboson (VV)
production (WW, WZ, and ZZ), and top-antitop (tt). Here under Tab.1 displays the full process
cross-section in pico-barn (pb) for both signal and that of backgrounds, as well as their BRs in

the dimuon channel.

Table 1. Production cross-sections and BR for signal and backgrounds at 14 TeV.

vV
Signal DY tt
Www | Wz zZ
Cross-section (pb) 4.786x1073 | 895.5 895.5 | 0.09742 0.01156 | 7.561
Branching ratios 9.7x107 5001 x10® | 0.012 | 3.65x103 | 0.0011 | 0.0123

3. Muons and Cutflow to Select Events

For the baseline selection; all events have to have two isolated muons in the final state.
Both muons should pass the tight working point criteria. Moreover, each muon has a transverse
momentum, prt> 10 GeV and has to be in the fiducial range of the muon system that's [n| < 2.5
and n| < 2.8, for Run III and Run IV, respectively. Here (1) represents the pseudorapidity
coverage and is given by the relation (n = In tan6/2) with (8) being the polar angle in yz-plane
of the CMS coordinate system. Since the signal is a very rare process, this necessitates a careful
selection of the events and needs a relatively large dataset to have enough statistics in order to
be sensitive to new physics. Therefore, events are required to have two oppositely charged
muons at least. This requirement is important to kill backgrounds from the same leptons charge
processes. Then events are selected if the pr-leading and pr-subleading muon has pt > 25 GeV
and pr > 15 GeV, respectively. Moreover, each event has to have transverse missing energy
(ET™Ss < 70 GeV), in order to suppress backgrounds from two vector bosons (WW, WZ, and

ZZ), and top-antitop (tt") processes.
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4. Results and Discussions

The expected number of weighted events to be seen at the end of the current Run I11 of
the LHC with a dataset size of 0.3 ab™ is shown in Tab. 2 before (initial) and after applying all
the selection cuts that were described in Sec. 3. The expected signal yield obtained is almost
745 events. The same investigation is performed at the foreseen Run IV of the high luminosity
LHC (HL-LHC) in 2026 with an integrated luminosity (Lin) of 3 ab™. Tab. 3 lists the expected
number of weighted events in this case with an expected signal yield of 10182 events. The
signal significance (S) is computed for both Runs 111 and IV.

Table 2. Cut-flow table demonstrating the event yields for the signal (H — p*u") versus total
backgrounds after each selection cut at 14 TeV and Lin= 0.3 ab™ The significance is also

presented in the last column.

Signal VvV Total

) DY WW W2 27 tt ?;)ckground SAB
::J'tt)'a' (0 | 1437.56 fbig X | 2577555 | 27076.14 ?6385 X1 226x10° | 505546269.2 | 0.064
Nb.  of | 6595 | 126 X| 13311786 | 2220331 | 222 X | 1132904 | 347289054.4 | 0.0445
muons > 1 108 108
Two
OpPositely | g5 g | 126 X1 13311786 | 151754 | 134 X | 113020436 | 261281346.7 | 0.0513
charged 108 108
muons
'(\BAQEVTGO 745.66 }gf X1 901526 | 9380.7 }gf X1 490104.72 | 231590383.7 | 0.049

Table 3. Cut-flow table demonstrating the event yields for the signal (H — p*u") versus total
backgrounds after each selection cut at 14 TeV and Lin= 3 ab™ The significance is also

presented in the last column.

VvV Total

Signal (S) | DY WW W2 27 it (Bg)ckground SAB
Initial (no 0 5 ;
) 1437564 | 2.69x 10° | 2577555 | 2707614 | 236x10° | 226x10° | 5071462692 | 0.202
Nb.  of | 1ac0734 | 2.44x10° | 23857527 | 2696313 | 236x10° | 2.15x 107 | 4824168891 | 0.2
muons > 1
Two
gﬁggsége'y 13490.1 2.44x10° | 2385295.2 | 185806.31 | 1.36x10° | 2.1x 107 | 3823584592 | 0.22
muons
g"eEVT <70 | 101823 1.82x10° | 13386011 | 9658923 | 1.0x 10° | 7769100 | 1.193x 10 | 0.1
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The pr distributions for the leading and subleading muons of the signal are shown in
Fig. 2 and Fig. 3 at Lin= 0.3 ab! and Lin= 3 ab™, respectively. As depicted in Fig. 2 (a) and
(b), the leading muon pr is around 65 GeV for both Lint values, whereas that of the sub-leading
muon is nearly 60 GeV, as shown in Fig. 3 (a) and (b). Fig. 4 (a) and (b) shows the dimuon
invariant mass distributions after applying the full selections with almost 746 and 10182 total
expected events at Lin= 0.3 ab® and Lin= 3 ab™, respectively. This is an important plot, as the
di-muons events coming from the Higgs signal can be easily selected from other SM
background events by the reconstructed Higgs mass (mn = 125.35 GeV).
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Fig.2.png. Transverse momentum pr distributions for the leading muon of the (H — ptu—)
signal after the full selection at 14 TeV and Lin= 0.3 ab™* (a) and Lin= 3 ab™® (b).
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Fig.3.png Transverse momentum pr distributions for the sub-leading muon of the (H — p+u—)
signal after the full selection at 14 TeV and Lin= 0.3 ab* (a) and Lin= 3 ab™ (b).
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Fig.4.png. The two muons invariant mass spectrum after the full selection at 14 TeV and Lint=
0.3 ab (a) and Lin= 3 ab™(b).

The pr distribution of the reconstructed object from the two muons boson is depicted
in Fig. 5. The events from the Higgs sample are accumulated in the low transverse momentum
region (< 200 GeV) that is dominated by the SM backgrounds. This histogram is a good tool
to be used to pick up events coming from the Higgs boson from that commencing from other

heavy new particles predicted by new physics; like Z -boson and B-meson [18].
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Fig.5.png. Transverse momentum pr distributions of dimuons for the (H — p+u—) signal at 14
TeV and Lin= 0.3 ab! (a) and Lin= 3 ab™* (b).
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Fig. 6 depicts the pseudorapidity flat distribution for the dimuons at both Lin. Through
this distribution, the H — p*uevents could be distinguished as they are coming from the decay
of a spin zero particle (like Higgs boson) from that coming from the decay of new heavy

particle particles like Z', which is a vector boson with spin = 1 that will give a different n-

distribution.
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Fig.6.png. n-distributions of dimuons at 14 TeV and Lin= 0.3 ab™* (a) and Lin= 3 ab™ (b).

The angular separation (AR) between the leading and sub-leading muons of the signal
are shown in Fig. 7 (a) and (b) for both Lint. It is obvious that the AR value at the peak region
is almost 3.14, which corresponds to an angle of 180° indicating that the two muons emitted

back-to-back due to the (H) boson decay.
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Fig.7.png. The angular separation (AR) between the leading and sub-leading muons at 14 TeV
Lin= 0.3 ab™ (a) and Lin= 3 ab™* (b).
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The statistical significance for the signal is estimated for Run Il of the LHC (Lin= 0.3 ab"
Yy and Run IV of HL-LHC (Lin= 3 ab™!). As depicted in Fig. 8, it has been found that a datasets
size of nearly 147185 ab™ and 773608 ab™ are required to to be collected during Run 111 and

Run IV, respectively, to achieve a 5o excess in the given channel at my = 125.35 GeV.
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Fig.8.png. Integrated luminosity in ab™ required to achieve a 5 o excess in the H — p*u~ events

versus the statistical significance (o) at Run Il of the LHC and Run IV at 14 TeV.
5. Conclusion

An investigation of Higgs bosons that decay into a couple of muons is conducted assuming two
scenarios Run 111 (0.3 ab™?) and Run IV (3 ab™) of the CMS experiment. Based on this study,
it has been found that a datasets of size much higher than targeted integrated luminosities for
both Run 11l and RunlV are needed to have a 50 excess in the (H — p'p") events at my =
125.35 GeV.
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