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Abstract: 

This work addresses the effect of anisotropic pressure on the strong magnetized white dwarf. 

A quasi-local equation of state is used to formulate the anisotropic factor inside the star. We 

use the assumption that the magnetic field is constant and strong enough to make degenerate 

electrons very energetic and occupy the first Landau level. Modified Lane-Emden equation is 

formulated and solved numerically. We interested in magnetized white dwarfs with mass range 

M=2.1-2.8 M_⨀ that was predicted as a progenitor for a peculiar type Ia-supernovae, which 

are characterized by low kinetic energy and over luminosities. In a good approximation, a 

mass-radius relation for this range of star masses was determined. It is found that the mass and 

radius of the stars increase due to anisotropic effect. The radius of the star decreases with 

increasing maximum energy of degenerate electrons and magnetic field intensity, which 

indicates that these quantities support occurrence of the explosion. The main disadvantage of 

used model is that the predicted internal magnetic field strength exceeds the maximum 

magnetic field needed for star stability, which refers that these stars are unstable and unbound. 

Keywords: Magnetic white dwarfs, Supernovae, Anisotropic. 

1. Introduction 

It is known that white dwarf stars cannot have a mass exceeds Chandrasekhar limit 

1.44 𝑀⨀ . Sometimes white dwarf can increase its mass by accreting mass form a companion 

star. The increase in mass will raise the inward gravitational force which in turn makes the star 

contracts and heats up its core such that it can allow a nuclear fusion to start again. The star 

internal pressure and temperature increase quickly with time. Subsequently, within a few 

seconds, a substantial fraction of the white dwarf matter undergoes a runaway reaction which 

releases huge energy in highly shining explosion known as type Ia-supernova without leaving 

any remnant. All supernovae produced in the same mechanism provide information about the 
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expansion of the universe and used as standard candles in measurement of cosmic distances 

[1,2]. 

Recent observations of some particular type Ia-supernovae such SN 2003fg, SN 2006gz, 

SN 2007if and SN 2009dc characterized by exceptionally high luminosity and lower kinetic 

energy [3, 4]. The kinetic energy comes from the difference between the binding energy of the 

white dwarf and the energy arising from the synthesis of elements in the explosion through the 

fusion. It is found that the light-curves of the previous supernovae are over-luminous and slow-

rising, indicating that they cannot be calibrated as standard candles. This makes a lack of 

confidence in all type Ia-supernovae in measuring cosmic distances and expansion history of 

the universe. This phenomenon can be explained if we suggest that the progenitor of these 

supernovae has a highly super Chandrasekhar mass white dwarf because the larger mass 

implies a larger binding energy of the star and hence a low kinetic energy (or smaller velocity) 

and/or higher luminosity than that observed in a standard type Ia-supernova [3]. These 

observations indicate that the progenitor of type Ia-supernovae have masses up to 2.1 − 2.8 𝑀⨀ 

which is higher than the famous Chandrasekhar mass limit. 

There is a lot of efforts to find mechanisms to explain the new super-Chandrasekhar 

mass of white dwarfs. For example, a rotating white dwarf accompanied by accretion from a 

companion star can explain super-Chandrasekhar limit [5]. Also, strong magnetic field can 

support that high mass limit. Das and Mukhopadhyay suggested that existence of super-strong 

central magnetic field about 8.8 × 1017𝐺 can support mass up to 2.58 𝑀⨀ [6]. Suh et al. [7] 

studied the influence of the weak magnetic field on the equation of state of a fully degenerate 

electron and obtained the mass radius relation for magnetic white dwarfs. They found that, at 

the same central density, the mass and radius of the white dwarf are increasing compared to 

non-magnetic white dwarfs. In Refs. [8–10] the authors obtained the equation of state for the 

degenerate electron of magnetic white dwarfs in a polytropic form by fitting the original 

equation of state of degenerate electron in strong magnetic field for one, two and three Landau 

levels. The mass radius relation is obtained by solving Lane-Emden equation, using fitting 

polytropic equations of states, and they proposed that the mass of strong magnetic white dwarfs 

lies in the range 2.3 − 2.6 𝑀⨀. 

It is worth noting that, until now, strongly magnetized white dwarfs have not been 

observed. Perhaps the reason is that the surface magnetic field of a star can be screened by 

accretion process form the companion star as it happens in the type Ia-supernovae progenitors. 
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Where superficial condensed plasma can produce an opposite magnetic moment, which 

decreases the surface magnetic field strength of the star. Thus, it becomes more difficult to be 

observed [8]. 

On the other hand, it is believed that the stellar structure and its development depends 

on the idea that the star consists of a perfect fluid, and this requires its internal pressure be 

isotropic [11, 12]. In the recent decades, theoretical studies have shown that many systems 

particularly that have a high density do not follow this belief and shows anisotropic pressure 

beside its radial one. Generally, the pressure anisotropy in stellar structure is produced by many 

physical processes in high- and low-density regimes [13–15]. For low density objects 

anisotropy may be caused by slow rotation [15], anisotropic velocity distribution [15–17], 

mixture of two non-interacting fluids [18], viscosity [19, 20] or by repulsive force in low mass 

charged white dwarfs [21, 22]. Also, there are some static solutions of spherical symmetric 

Einstein-Vlasov equations that are anisotropic [23]. In highly dense systems, phase transitions 

by relativistic nuclear interactions can make nuclear matter be anisotropic, for more details see 

[24–28]. 

It was established that the magnetic field, in degenerate stars, can break the rotational 

symmetry 𝑂(3) and produces anisotropic pressure [29]. The necessary criterion for the 

magnetic field, which cannot be neglected within the star, that contributes to pressure and 

energy with the same order as matter contribution has been calculated. It was found that the 

pressure is divided into two components, one in the direction of the field, i.e. parallel to the 

pressure, and the other perpendicular to the direction of the field, i.e. in the transverse direction 

of the pressure. The authors in [29] have indicated that these results are valid for relativistic 

systems composed of fermions in the presence of uniform and constant magnetic field. In 

addition to that, anisotropy can be induced into any isotropic compact stars naturally, Herrera 

[30] proved that shear in the stellar fluid flow, inhomogeneity in energy-density distribution 

and dissipative heat fluxes can initiate anisotropic effects into isotropic configuration. 

Therefore, magnetic white dwarfs fall under the influence of anisotropic pressure. In [31] the 

anisotropic effects were considered in highly magnetic white dwarfs. The strategy is that 

dealing with radial and anisotropic pressure on an equal footing enable them to recover the 

covariance form of Lane-Emden equations. This method enables them to obtain a new mass-

radius relation for these stars. 
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In this paper the equation of state will be formulated using the hypothesis that the 

magnetic field inside the star is constant and very strong such that the degenerate electrons will 

be very energetic and occupy the first Landau level. A quasi-local equation of state will be used 

to formulate the anisotropic effect. Using these assumptions, a modified Lane-Emden equation 

is calculated. Results show that anisotropic effect leads to disappear the maximum mass limit 

found in [6] and a mass-radius relation is investigated. In section II equation of state for 

electrons in strong magnetic field is calculated in detail. The main features of the quasi-local 

equation of state for anisotropy and modified Lane-Emden equation is recorded in section III. 

In section IV a new mass-radius relation for the magnetic white dwarfs is achieved and 

dynamical stability of the star is examined. 

2. Equation of state for electrons in strong magnetic field 

We will suggest that the magnetic field will be very strong, such that it will prevent the 

electrons from moving, therefore, there will be no current, i.e.  𝐽 = 0 where 𝐽 is the electrons 

current inside the star. Hence from steady state Maxwell equation ∇ × �⃗⃗� =
4𝜋

𝑐
𝐽 we can see that 

there is no spatial variation of the magnetic flux density �⃗⃗� for 𝐽 = 0, which means that the 

magnetic field will be constant through the star [32]. It well known that the motion of the 

electron in magnetic field is quantized which known as Landau quantization [33]. If the 

electron moves perpendicularly to a constant uniform magnetic field such that ℏ𝜔𝑐 ≥ 𝑚𝑒𝑐2 

where ℏ is the Planck constant, 𝑚𝑒 is the mass of the electron, 𝑐 is the speed of light, 𝜔𝑐 =
𝑒𝐵

𝑚𝑒𝑐
 

is the critical cyclotron frequency and e is the charge of the electron, the solution of Dirac 

equation is given by 

                                          𝐸𝜐,𝑃𝑧

2 = 𝑃𝑧
2𝑐2 + 𝑚𝑒

2𝑐4 + 2𝜐𝑒𝐵ℏ  

                                                    = 𝑃𝑧
2𝑐2 + 𝑚𝑒

2𝑐4(1 + 2𝜐𝐵𝑟)                                               (1) 

𝜐 = 𝑛𝐿 +
1

2
+ 𝜎, 𝑛𝐿 = 0, 1, 2, … is the Landau level, 𝜎 = ±

1

2
  is the electron spin, 𝐵𝑟 =

𝐵

𝐵𝑐
  

where  𝐵𝑐 =
𝑚𝑒

2𝑐4

𝑒ℏ
= 4.414 × 1013𝐺 is the critical magnetic field strength and 𝑃𝑧 is the electron 

momentum in z direction. In analogous to Eq. (1) Fermi energy of the electrons in 𝜐-level can 

be defined as   

                                        𝐸𝐹
2 = 𝑃𝐹,𝜐

2 𝑐2 + 𝑚𝑒
2𝑐4(1 + 2𝜐𝐵𝑟)                                                     (2) 

and the dimensionless Fermi energy can be written as 
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                                       𝜖𝐹 =
𝐸𝐹

𝑚𝑒𝑐2
= [𝑥𝜐

2 + 2𝜐𝐵𝑟 + 1]
1

2                                                        (3) 

Where 𝑥𝜐 =
𝑃𝐹,𝜐

𝑚𝑒𝑐2  is the dimensionless Fermi momentum and 𝑝𝐹,𝜐 is the Fermi momentum of 

the electrons. We can determine the maximum number of occupied Landau level 𝜐𝑚 according 

to the maximum dimensionless Fermi energy, namely 𝜖𝐹𝑚𝑎𝑥 =
𝐸𝐹𝑚𝑎𝑥

𝑚𝑒𝑐2
 ,  from the condition   

𝑃𝐹,𝜐 ≥ 0 [6] such that 

                                        𝜐𝑚 ≤ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 (
𝜖𝐹𝑚𝑎𝑥

2 −1

2𝐵𝑟
)                                                                (4) 

On the other hand, the available density of states for electrons in magnetic field will also be 

modified. In this case, the electron density of state is given by [7] 

 

                                      
2

𝑐ℏ2
∑ 𝑔𝜐 ∫

𝑒𝐵

(2𝜋)2 𝑑𝑝𝑧
𝜐𝑚
𝜐=0                                                                        (5) 

Where  𝑔𝜐 = (2 − 𝛿0𝜐) , 𝛿0𝜐 is Kronecker delta function and 𝜐𝑚 is the highest occupied landau 

level. Changing in density of state will modify the thermodynamical function of electrons. Then 

the electron number density in degenerate case will be given as 

 

                                     𝑛𝑒 =
𝐵𝑟

2𝜋2𝜆3
∑ 𝑔𝜐 ∫ 𝑑 (

𝑝𝑧

𝑚𝑒𝑐
)

𝑥𝜐

0

𝜐𝑚
𝜐=0   

                                           =
𝐵𝑟

2𝜋2𝜆3
∑ 𝑔𝜐𝑥𝜐

𝜐𝑚
𝜐=0                                                                         (6) 

Where 𝜆 =
ℏ

𝑚𝑒𝑐
 is the Compton wavelength of the electron. The mass density is related 𝜌 to the 

number density through the relation   

                                    𝜌 = 𝜇𝑒𝑚𝜇𝑛𝑒                                                                                        (7) 

Where 𝜇𝑒 is the molecular weight per electron and 𝑚𝜇 is the unified atomic mass unit. Using 

the modified phase space Eq. (5), the energy density and the pressure of the degenerate 

electrons can be given as 

                                   휀𝑒 =
𝐵𝑟

2𝜋2𝜆3
∑ 𝑔𝜐 ∫ 𝐸𝜐,𝑝𝑧

𝑑 (
𝑝𝑧

𝑚𝑒𝑐
)

𝑥𝜐

0

𝜐𝑚
𝜐=0   

                                        =
𝐵𝑟

2𝜋2𝜆3 𝑚𝑒𝑐 ∑ 𝑔𝜐(1 + 2𝜐𝐵𝑟)𝜓+(𝑧)
𝜐𝑚
𝜐=0                                           (8) 

                                   𝑃𝑒 = −휀𝑒 + 𝑛𝑒𝐸𝐹   
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                                       =
𝐵𝑟

2𝜋2𝜆3
𝑚𝑒𝑐 ∑ 𝑔𝜐(1 + 2𝜐𝐵𝑟)𝜓−(𝑧)

𝜐𝑚
𝜐=0                                             (9) 

Where  

                                   𝜓± =
1

2
𝑧√1 + 𝑧2 ±

1

2
𝑙𝑛(𝑧 + √1 + 𝑧2)                                              (10) 

                                   𝑧 =
𝑥𝜐

√1+2𝜐𝐵𝑐
                                                                                         (11) 

It is known that the strength of the magnetic field controls the separation gaps between 

energy levels and its number. Eq.(4) shows that the number of energy levels decrease and 

separation between energy levels increase with increasing magnetic field strength. We 

interested in strong magnetic field such that the degenerate electrons will be restricted to 

occupy only the first Landau level, where 𝜐 = 0, while the higher levels will be empty [6]. In 

case of occupied first Landau level by degenerate electrons, the mass density can be calculated 

using Eqs. (6) and (7) 

                                  𝜌 =
𝜇𝑒𝑚𝜇𝐵𝑟

2𝜋2𝜆3 𝑥0                                                                                      (12) 

The pressure can be determined from Eq. (9) 

                                  𝑃𝑒 =
𝑚𝑒𝑐2𝐵𝑟

4𝜋2𝜆3 [𝑥0√𝑥0
2 + 1 − 𝑙𝑛 (𝑥0 + √𝑥0

2 + 1)]                                 (13) 

Magnetic white dwarfs provide a very high-density medium with a high magnetic field 

strength, which stimulates the relativistic characteristics of degenerate electrons to appear and 

to have an effect, such that we can use the approximation 𝐸𝐹 ≫ 𝑚𝑒𝑐2  or 𝜖𝐹 ≫ 1 . Using this 

approximation into Eq. (3) taking into account that there is only one occupied level by 

degenerate electrons, namely 𝜐 = 0, one gets 

                                           𝑥0 = √𝜖𝐹
2 − 1 ≈ 𝜖𝐹                                                                    (14) 

Using this approximation into Eqs. (12) and (13) 

                                            𝜌 =
𝜇𝑒𝑚𝜇𝐵𝑟

2𝜋2𝜆3
√𝜖𝐹

2 − 1  

                                             𝜌 =
𝜇𝑒𝑚𝜇𝐵𝑟

2𝜋2𝜆3 𝜖𝐹                                                                           (15) 

                                            𝑃𝑒 =
𝑚𝑒𝑐2𝐵𝑟

4𝜋2𝜆3
[𝜖𝐹

2 − ln 2𝜖𝐹]                                                          (16) 

Logarithmic term in Eq. (16) can be neglected in the limit 𝜖𝐹 ≫ 1 and using Eq. (15) we can 

determine the equation of state for degenerate electrons 
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                                            𝑃𝑒 = 𝑘𝑚𝜌2                                                                          (17)                                             

                                          𝑘𝑚 =
𝜋2𝑚𝑒𝑐2𝜆3

𝜇𝑒
2𝑚𝜇

2 𝐵𝑟
                                                                             (18) 

The central density can be calculated from Eq. (15) using maximum dimensionless Fermi 

energy 𝜖𝐹𝑚𝑎𝑥 such that 

                                             𝜌𝑐 =
𝜇𝑒𝑚𝜇𝐵𝑟

2𝜋2𝜆3
√𝜖𝐹𝑚𝑎𝑥

2 − 1                                                          (19) 

Only if the first level is filled with electrons 𝜐 = 0 , as we considered, then it should be 𝜐𝑚 =

1, see [6]. Using this value in Eq.(4) to calculate the maximum dimensionless Fermi energy 

𝜖𝐹𝑚𝑎𝑥 which can be used to calculate the density at the center from Eq.(19) 

                                            𝜌𝑐 =
𝜇𝑒𝑚𝜇

√2𝜋2𝜆3 𝐵𝑟

3

2                                                                           (20) 

3. Anisotropic Lane-Emiden Equation 

For non-rotating stars with spherical symmetry and uniform composition, the hydrodynamic 

equilibrium equation can be written as 

                                          
𝑑𝑃𝑟

𝑑𝑟
= −𝜌

𝑑𝜙

𝑑𝑟
+

2

𝑟
(𝑃⊥ − 𝑃𝑟)                                                          (21) 

Where 𝑃𝑟  is the radial pressure of the star, 𝜌 is the matter density and 𝜙 is the Newtonian 

gravitational potential. 𝑃⊥ is the tangential pressure and 𝑃⊥ − 𝑃𝑟 is the anisotropic factor, as 

called by Herrera and de Leon [34], measuring the anisotropic effect in the system. Eq. (21) is 

the non-relativistic limit of Tolman-Oppenheimer-Volkoff equation for anisotropic matter. The 

choice of the anisotropic factor should satisfy initial conditions of Eq.(21) that it should vanish 

at least as rapidly a 𝑟 → 0, or lim
𝑟→0

𝑃⊥−𝑃𝑟

𝑟
= 0 .  We can see that in the case 𝑃⊥ > 𝑃𝑟   the pressure 

gradient will increase, or the anisotropic force will be directed outward, so the mass of the star 

should increase. But for 𝑃⊥ < 𝑃𝑟  the pressure gradient will decrease, or the anisotropic force 

will be directed inward, and the mass of the star will decrease. Unfortunately, there is no 

evidence to suggest the real form of anisotropy in compact stars. Therefore, we follow some 

theoretical suggestions that meet the boundary conditions of the system. Bowers and Liang 

[35] suggested a form of anisotropic factor that dependence on pressure, density, and 

compactness of the star and that it satisfies the boundary conditions of the system. This model 

is studied in case of magnetic white dwarfs in [36]. Following [37] and [38] a quasi-local 

equation of state will be used to describe the anisotropy effect, such that 
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                                          𝑃⊥ − 𝑃𝑟 = 𝛼𝑃𝑟𝜇                                                                           (22) 

where 𝛼 is the anisotropy parameter which measures the anisotropy effect in the system and 𝜇 

is the compactness defined as 

                                         𝜇 =
2𝐺𝑚(𝑟)

𝑐2𝑟
                                                                                     (23) 

The main feature of the quasi-local model is that it considers the quasi-local properties of the 

star configuration via compactness and local properties of the matter via pressure [38]. Also, 

we can notice that this model fulfills the boundary conditions of the system. The anisotropy 

factor vanishes at the center due to the compactness → 𝑟2 , where the stellar fluid should be 

isotropic. Also at the surface of the star the anisotropic vanishes due the presence of the radial 

pressure which disappears there, Although there is no evidence that tangential pressure at the 

surface is equal to zero [39]. But we will accept this idea that adopted by this model. For more 

details and applications on this model see [40–43]. 

For spherical symmetry and uniform composition stars, Poisson equation can be written as 

                                         
1

𝑟2

𝑑

𝑑𝑟
(𝑟2 𝑑𝜙

𝑑𝑟
) = 4𝜋𝜌𝐺                                                                   (24) 

and polytropic equation of state (17) and mass equation may be written in the form 

                                         𝑃𝑟 = 𝑘𝜌𝛾                                                                                       (25) 

                                         
𝑑𝑚

𝑑𝑟
= 4𝜋𝜌𝑟2                                                                                  (26) 

𝑛 =
1

𝛾−1
  is the polytropic index. Use Eqs. (22), (23) and (25) into (21) 

                                        
𝑑𝜙

𝑑𝑟
= −𝑘

1+𝑛

𝑛
𝜌

1−𝑛

𝑛
𝑑𝜌

𝑑𝑟
+ 𝛼

4𝐺

𝑐2

𝑚𝑘𝜌
1
𝑛

𝑟2
                                                  (27) 

Define the dimensionless density 𝜔 

                                          𝜌 = 𝜌𝑐𝜔𝑛                                                                                     (28) 

Where 𝜌𝑐  is the cental density. Use Eqs. (27) and (28) into (24) 

                                       
𝑑

𝑑𝑟
(𝑟2 𝑑𝜔

𝑑𝑟
) = −

4𝜋𝐺

𝑘(1+𝑛)
𝜌

𝑛−1

𝑛 𝑟2𝜔𝑛 + 𝛼
4𝐺

𝑐2(1+𝑛)

𝑑

𝑑𝑟
(𝑚𝜔)                   (29) 

Define the dimensionless coordinate 𝜉 

                                       𝑟 = 𝑟𝑐𝜉                                                                                            (30) 
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                                         𝑟𝑐 =
𝑘(1+𝑛)

4𝜋𝐺
𝜌𝑐

1−𝑛

𝑛                                                                             (31) 

Use Eqs. (30) and (31) into Eqs.(29) and (26), one gets 

                                         
𝑑

𝑑𝜉
(𝜉2 𝑑𝜔

𝑑𝜉
) = −𝜉2𝜔𝑛 + 𝛼

4𝐺

(1+𝑛)𝑐2𝑟𝑐

𝑑

𝑑𝜉
(𝑚𝜔)                                (32) 

                                         
𝑑𝑚

𝑑𝜉
= 4𝜋𝜌𝑐𝑟𝑐

3𝜉2𝜔𝑛                                                                       (33) 

Use Eq . (33) into (32) 

                                         
𝑑

𝑑𝜉
(𝜉2 𝑑𝜔

𝑑𝜉
) = −

1

4𝜋𝜌𝑐𝑟𝑐
3

𝑑𝑚

𝑑𝜉
+ 𝛼

4𝐺

(1+𝑛)𝑐2𝑟𝑐

𝑑

𝑑𝜉
(𝑚𝜔)                          (34) 

Integrate Eq. (34) form the center of the star where 𝜉 = 0 to the star surface where 𝜉 = 𝜉𝑅 

taking into account the following boundary conditions 

                                        𝑚(𝜉𝑅) = 𝑀,     𝑚(0) = 0,     𝜔(𝜉𝑅) = 0,      𝜔(0) = 0                 (35) 

where 𝜔(𝜉𝑅) = 0 guarantees that the stellar density is vanished at the surface of the star and 

𝜉𝑅 is the dimensionless total star radius. We can obtain the total mass of the star as 

                                        𝑀 = 4𝜋𝜌𝑐𝑟𝑐
3𝜉𝑅

3 (
𝑑𝜔

𝑑𝜉
)

𝜉𝑅

                                                                  (36) 

Also, from Eq. (34) we can see that 

                                      𝜉2 𝑑𝜔

𝑑𝜉
+ [

1

4𝜋𝜌𝑐𝑟𝑐
3 −

4𝐺𝛼𝜔

(1+𝑛)𝑐2𝑟𝑐
] 𝑚 = 𝑐𝑜𝑛𝑠𝑡                                          (37) 

Using the boundary conditions 𝜉 = 0 and 𝑚(0) = 0, we find that 𝑐𝑜𝑛𝑠𝑡 = 0, hence we can 

obtain the mass as a function of 𝜉 

                                     𝑚(𝜉) = − [
1

4𝜋𝜌𝑐𝑟𝑐
3 −

4𝐺𝛼𝜔

(1+𝑛)𝑐2𝑟𝑐
]

−1

𝜉2 𝑑𝜔

𝑑𝜉
                                            (38) 

It is clear that Eq.(38) goes to Eq.(36) at 𝜉 = 𝜉𝑅  where 𝑚(𝜉𝑅) = 𝑀 and 𝜔(𝜉𝑅) = 0 . now 

removing the mass from Eq .(32) using Eqs. (33) and (38), one finds 

                                   
1

𝜉2

𝑑

𝑑𝜉
(𝜉2 𝑑𝜔

𝑑𝜉
) = −𝜔𝑛 + 𝛼𝛽 [𝜔𝑛+1 − (1 − 𝛼𝛽𝜔)−1 (

𝑑𝜔

𝑑𝜉
)

2

]               (39) 

                                   𝛽 =
16𝜋𝐺

(1+𝑛)𝑐2
𝜌𝑐𝑟𝑐

2                                                                                 (40) 

Eq. (39) is the Modified Lane-Emden equation for polytropic index 𝑛. In our case = 1 , use 

Eqs. (20) and (31) into Eqs. (39) and (40), one gets 
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1

𝜉2

𝑑

𝑑𝜉
(𝜉2 𝑑𝜔

𝑑𝜉
) = −𝜔 + 𝛼𝛽 [𝜔2 − (1 − 𝛼𝛽𝜔)−1 (

𝑑𝜔

𝑑𝜉
)

2

]                    (41) 

                                   𝛽 =
2√2𝑚𝑒

𝜇𝑒𝑚𝜇
𝐵𝑟

1

2                                                                                      (42) 

And from Eq. (30) we can calculate the radius of the star 

                                   𝑅 = 𝑟𝑐𝜉𝑟                                                                                              (43) 

Eq.(41) can be solved numerically with the boundary conditions 𝜔(0) = 1 and  (
𝑑𝜔

𝑑𝜉
)

𝜉𝑅

= 0. 

In turn the values of 𝜉𝑅 and  (
𝑑𝜔

𝑑𝜉
)

𝜉𝑅

, which can be determined at  𝜔(𝜉𝑅) = 0, can be used to 

calculate the mass and radius of the star from Eqs.(36) and (43).     

4. Results and discussion 

From Eq. (41) we can recover the original case when = 0 . In this case the solution is 

𝜔𝛼=0 =
sin 𝜉

𝜉
 with 𝜉𝑟 = 𝜋 . Using this solution into Eqs. (36) and (43) to calculate the mass 

and radius of the star 

                                     𝑀𝛼=0 =
1

𝜇𝑒
2𝑚𝜇

2 (
𝑐𝜋ℏ

𝐺
)

3

2
= 2.58 𝑀⨀                                                      (44) 

                                     𝑅𝛼=0 =
1

𝜇𝑒𝑚𝜇𝑚𝑒
(

𝜋3ℏ3

2𝑐𝐺𝐵𝑟
)

1

2
                                                                   (45) 

Eq.(44) shows that the mass of the star depends on the fundamental constants and does 

not depend on the central density of the star or the magnetic field strength of the star. But the 

advantage of this formula is that the mass of the star 2.58 𝑀⨀ lies in the range of progenitor 

masses that predicted by the observations of type Ia-supernovae. While the radius of the star 

depends on the magnetic field strength of the star which depends on the maximum energy of 

degenerate electrons 𝜖𝐹𝑚𝑎𝑥 . Hence the star with calculated mass in Eq.(44) can take any value 

of the radius depending on the magnetic field strength. 

The solution of Eq. (41) diverges for the values ≥ 1 . In this work we interested in stars 

with masses in the range = 2.1 − 2.8 𝑀⨀ . Hence the singularity will not present any problem 

because it falls outside the scope of our solutions where the maximum mass limit 2.8 𝑀⨀ can 

be calculated at = 0.098 . Use Eqs. (20) and (31) into Eq. (36), one gets 
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                                       𝑀 = −
𝜋

1
2

𝜇𝑒
2𝑚𝜇

2 (
𝑐ℏ

𝐺
)

3

2
𝜉𝑅

2 (
𝑑𝜔

𝑑𝜉
)

𝜉𝑅

                                                          (46) 

Fig. (1) shows the numerical solution of Eq. (41) using values 𝛼𝛽 = −0.287 and 

0.089 which correspond to masses 𝑀 = 2.1 and 2.8 𝑀⨀, respectively. The star mass, Eq. 

(46), as a function of 𝛼𝛽 is shown in Fig. (2). Obviously, the used model addresses the 

problem of having a single mass value, as shown earlier in [6]. Hence our results can cover 

the uncertainty in the progenitor mass for the type Ia-supernova between 2.1 and 2.8 𝑀⨀ 

which is predicted by recent observed data of that explosions. 

 

FIG. 1: Numerical solution of modified Lane-Emden equation with quasi-local anisotropic 

factor 

 

FIG. 2: Masses of highly magnetized white dwarf as function of αβ for one energy level 

From Fig. (2) we can see that at 𝛼𝛽 = 0 the mass of the star will be 𝑀 = 2.8 𝑀⨀ where 

𝑃⊥ − 𝑃𝑟 = 0. The positive value of the quantity 𝛼𝛽 appears when 𝑃⊥ > 𝑃𝑟 . In this case the 

quantity  
𝑃⊥−𝑃𝑟

𝑟
 represents a force directed outward and increases the internal pressure, hence it 

leads the system to increase its mass over 2.58 𝑀⨀ to achieve stability. And vice versa, the 

negative value of the quantity 𝛼𝛽 appears when 𝑃⊥ < 𝑃𝑟. The force in this case directed inward 
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which decreases the internal pressure, and it leads the system to decrease its mass less 2.58 𝑀⨀ 

to achieve stability.  

To calculate the radius of a star, we must choose values for the parameter 𝜖𝐹𝑚𝑎𝑥, which 

is completely arbitrary, but it must fulfill the condition 𝜖𝐹𝑚𝑎𝑥
2 ≫ 1 . We will follow [44–46] in 

choosing values of the parameter, namely 𝜖𝐹𝑚𝑎𝑥 = 20, 100 and  200. The central density and 

magnetic field strength corresponding to these values are listed in table 1  

Table 1: The central density and magnetic field strength with energy parameter 

𝝐𝑭𝒎𝒂𝒙 𝝆𝒄(𝒈𝒎/𝒄𝒎) 𝑩(𝑮) 

𝟐𝟎 1.2 × 1010 8.8 × 1015 

𝟏𝟎𝟎 1.5 × 1012 2.2 × 1017 

𝟐𝟎𝟎 1.2 × 1013 8.8 × 1017 

 

Fig. (3) shows the mass radius relation for three categories of magnetic white dwarfs 

which corresponding to above mentioned energy values. Mass-radius relation at 𝜖𝐹𝑚𝑎𝑥 = 200 

is shown in more detail in Fig. (4). We can see that the radius of the magnetic star increases 

with mass in each category, the increase seems almost linear. The increase in radius with mass 

in each category due to the presence of the anisotropy in the system, represented by the 

anisotropy parameter 𝛼. It seems that the anisotropic pressure increases the total pressure inside 

the star which leads to an increase in the mass and radius of the star to fulfill the requisite 

condition for stability. 

 

FIG. 3: Mass-radius relation for highly magnetized white dwarfs for one energy level 
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FIG. 4: mass-radius relation of magnetic white dwarfs at different energies  

On the other hand, as the system energy (we mean maximum energy of degenerate 

electrons that occupy lowest Landau level) increases, the radius of the star decreases at the 

same mass despite the increase in central density of the star as shown in above listed values. 

Perhaps this result indicates that choosing large values of system energy, and hence a large 

values of internal magnetic field strength of the star, is more sense because the increase in 

system energy leads to smaller radius, which increases the probability occurrence of the 

supernova explosion. We can touch this result by dividing Eq. (36) by the square of Eq. (43), 

one finds that 

                                           
𝑀

𝑅2 = −
2𝑚𝑒

2𝑐
5
2

(𝜋𝐺ℏ3)
1
2

𝐵𝑟 (
𝑑𝜔

𝑑𝜉
)

𝜉𝑅

                                                            (47) 

The numerical value of the derivative (
𝑑𝜔

𝑑𝜉
)

𝜉𝑅

 correspond to mass range 𝑀 = 2.1 − 2.8 𝑀⨀ lies 

in between −0.280 and −0.330, so we can use its average value (
𝑑𝜔

𝑑𝜉
)

𝜉𝑅

= −0.305, then 

Eq.(47) can be rewritten as 

                                           
𝑀

𝑀⨀
=

𝐵𝑟

8.2×10−5 (
𝑅

𝑅⨀
)

2

                                                                    (48) 

Eq. (48) shows that the mass-radius relation of magnetic white dwarfs, in a good 

approximation, depends only on the magnetic field, the effect of the anisotropy is given up by 

fixing the derivative at −0.305, which point out that its small impact. It is worth noting that 

the maximum deviation in radius between above equation and the exact result that shown in 

Fig. (3), for masses 2.1 𝑀⨀ and 2.8 𝑀⨀ is around 4% and we should stress that this equation 

valid only for these mass range of magnetic white dwarfs. Eq. (48) points out that the effect of 

anisotropy on the mass-radius relation of the star so small. This result harmonizes with the 
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comment about the used model in [37] that the compactness is much smaller than unity in non-

relativistic regime, so the anisotropy not expected to play important part. 

Now let us suggest how does the increase in the magnetic field affect the supernova 

mechanism. Increasing the mass of white dwarfs by mass accretion from the accompanied star 

increases also the gravitational inward force which leads to contract the radius of the star. Due 

to the conservation property of the total magnetic flux inside the star, the internal magnetic 

field strength increases with star contraction. According to Eq. (48), the magnetic field 

increases the contraction rate of the star. Hence growing the mass of the star, by matter 

accretion, and decreasing the radius of the star, by gravitational contraction and magnetic field, 

heats up the star core and allows to the nuclear fusion to start again. With time, the rate of 

nuclear fusion increases and internal pressure increases. Later, within a few seconds, the 

pressure overcomes the gravitational collapse, and a large portion of the white dwarf substance 

undergoes a runaway reaction that releases enormous energy in a very bright burst known as 

type Ia-supernova without leaving any residue. 

Now we will use the virial theorem to check the value of the magnetic field within the 

star and its stability. According to [47, 48, 49] the necessary condition for stability is that the 

magnetic energy 𝑊𝐵 of the star should equal to the gravitational potential energy 𝑊𝐵 of the 

star, which are defined as follow, respectively, 

                                             𝑊𝐵 =
𝐵2𝑅2

6
                                                                                 (49) 

                                             |𝑊𝐺| =
3

5−𝑛

𝐺𝑀2

𝑅
=

3

4

𝐺𝑀2

𝑅
                                                           (50) 

where 𝑛 = 1. The maximum possible magnetic field 𝐵𝑚𝑎𝑥 that needed for stability can be 

terminated from the stability condition 𝑊𝐵 = |𝑊𝐺| 

                                              𝐵𝑚𝑎𝑥 = √
9𝐺

2
 

𝑀

𝑅2                                                                        (51) 

Use Eq. (48) into (51) 

                                              𝐵𝑚𝑎𝑥 = √
9𝐺

2
 

𝐵𝑟

8.2×10−5
    

𝑀⨀

𝑅⨀
2                                                       (52) 

The equilibrium takes place when the internal magnetic field 𝐵 = 𝐵𝑐𝐵𝑟 is equal to the 

maximum field for stability 𝐵𝑚𝑎𝑥 , the ratio between these fields 
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𝐵

𝐵𝑚𝑎𝑥
= 8.2 × 10−5√

2

9𝐺
 𝐵𝑐

𝑅⨀
2

𝑀⨀
= 16                                       (53)  

It means that the internal magnetic field of the star exceeds the maximum magnetic field needed 

for stability about 16 times. Of course, this result will reflect on the stability condition which 

needs 
𝑊𝐵

|𝑊𝐺|
≈ 1 , to calculate this value 

                                              
𝑊𝐵

|𝑊𝐺|
=

2

9𝐺
𝐵2 𝑅4

𝑀2
                                                                        (54) 

use 
𝑅2

𝑀
 from Eq. (51) into (54), one gets 

                                              
𝑊𝐵

|𝑊𝐺|
=

𝐵2

𝐵𝑚𝑎𝑥
2 = 256                                                                   (55) 

Thus, the ratio is larger than unity, so that the strongly magnetized white dwarfs are unstable 

and unbound according to used model. On the other hand, Chandrasekhar and Fermi [47] 

proved that the star can abandon the spherical symmetry due to its internal magnetic field and 

become oblate by contracting along the field direction. The star proceeds to contract along the 

direction of the magnetic field and turns into an oblate spheroidal shape until the ratio 
𝜖

𝑅
 

becomes 

                                                
𝜖

𝑅
= −

35

24

𝐵2𝑅4

𝐺𝑀2                                                                           (56)  

where 𝜖 is the eccentricity. Use Eq. (51) into (56), one gets 

                                                
𝜖

𝑅
= −6.56

𝐵2

𝐵𝑚𝑎𝑥
2 = −1679                                                     (57) 

This result point out that the star becomes flat at the poles. This means that the star will 

deviate strongly from spherical symmetry to have a spheroidal shape due to presence of its 

ultra-magnetic field. According to used model these stars are unstable and unbound. Perhaps 

using a constant magnetic field strength in calculations, where the surface magnetic field of the 

star is several order magnitudes lower less than the central one, and lack of consideration for 

breaking the spherical symmetry, due to magnetic field, are reasons that cause appearance of 

instability in the star. 

5. Conclusion 

This paper is devoted to the study of a model of spherically symmetric anisotropic fluid 

distribution, aiming to explain some super luminous type Ia-supernovae recently reported from 

astrophysical observations. The anisotropy in such stars is produced by breaking rotational 



Mohamed Moussa                                                                J. Sci. Res. Sci., 2023, 40, (1): 121-141  

-136- 

symmetry by magnetic field or by some other physical processes such as shear in stellar fluid 

flow, inhomogeneity in energy-density distribution or dissipative heat fluxes. Quasi-local 

equation of state is used to describe the anisotropic behavior in such compact stars. 

Unfortunately, there is no evidence to suggest the real form of anisotropy in compact stars. 

Therefore, we follow some theoretical suggestions that meet the boundary conditions of the 

system and the evidence for its validity is the comparisons with the experimental results. This 

model was chosen here only, thinking that it is closer to the reality without evidence. Considers 

the quasi-local properties of the star configuration via compactness and local properties of the 

matter as pressure, as well as it fulfills the necessary boundary conditions for the system. 

Following [6], we suggest that the magnetic field is very strong and has a constant strength 

through the star such that the degenerate electrons will be very energetically and restricted to 

occupy the first Landau level only. In this case the equation of state takes a polytropic form 

with polytropic index 𝑛 = 1. A modified Lane-Emden equation is formulated and solved 

numerically. A new mass-radius relation was formulated and used through virial theorem to 

examine the stability of the star. 

It is found that for fixed system energy (maximum energy of degenerate electrons that 

occupy lowest Landau level), or equivalently for fixed magnetic field strength, the radius of 

the star increases with mass slowly. Also, as the energy of the system increases, the radius of 

the star decreases for the same star mass. This indicates that choosing a large value of the 

energy of the system is closer to reality due to that it decreases the star radius, which increases 

the probability of supernova explosion. The calculations point out that the effect of the 

anisotropy is weak, due to that the compactness is much less than unity in non-relativistic 

regime. At least a relationship was found between radius and mass of the star that was not 

present in the original work. We used a virial theorem to study the stability conditions of the 

star. Calculations show that the predicted magnetic field of the star is exceeds the maximum 

magnetic field of the star that needed for stability configuration. The strong internal magnetic 

field makes these stars unstable and unbound. As well as it makes them deviate from spherical 

symmetry to oblate spheroidal shape. 

The effects of general relativity in the maximum mass of the star are small, around 2% 

[50- 53], so we do not expect these effects to change the stability state of the star. May be the 

reason of the instability is using the assumption of spherical symmetry, where the results shows 

that the star is deformed by its internal magnetic field. Also using the assumption of the 

constancy of the internal magnetic field of the star does not describe the true state of the star 
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as the surface magnetic field is less than the field at the center and therefore there is a gradient 

of the field inside the star [54, 55]. So, we must solve the structure equations along with 

Maxwell equations assuming a varying magnetic field profile. 
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 الملخص العربى

 تأثير الضغط متباين الخواص على الأقزام البيضاء شديدة المغنطة باستخدام معادلة الحالة شبه المحلية

 محمد موسى

 جامعة بنها -العلومكلية  -قسم الفيزياء 

تسُتخدم معادلة الحالة شبه  يتناول هذا العمل تأثير الضغط متباين الخواص على القزم الأبيض شديد المغنطة.

المحلية لصياغة عامل متباين الخواص داخل النجم. نستخدم افتراض أن المجال المغناطيسي ثابت وقوي بما يكفي لجعل 

امدن المعدلة وحلها -وتحتل المستوى الأول من مستويات لانداو. تمت صياغة معادلة لانالإلكترونات المنحلة نشطة للغاية 

𝑀نحن مهتمون بالأقزام البيضاء الممغنطة ذات النطاق الكتلي   عدديًا. = 2.1 − 28 𝑀⊙  والتي تم التنبؤ بها كأسلاف

في تقدير تقريبي جيد، تم  ضاءة الزائدة.، والتي تتميز بانخفاض الطاقة الحركية والإIaلمستعرات عظمى غريبة من النوع 

النجوم. لقد وجد أن كتلة النجوم ونصف قطرها تزداد بسبب تأثير متباين  تحديد علاقة الكتلة بنصف القطر لهذا النطاق من

يتناقص نصف قطر النجم مع زيادة الطاقة القصوى للإلكترونات المنحلة وشدة المجال المغناطيسي ، مما يشير  الخواص.

لى أن هذه الكميات تدعم حدوث الانفجار. العيب الرئيسي للنموذج المستخدم هو أن شدة المجال المغناطيسي الداخلية المتوقعة إ

 تتجاوز المجال المغناطيسي الأقصى اللازم لاستقرار النجوم ، مما يشير إلى أن هذه النجوم غير مستقرة وغير مرتبطة.

 

 

 

 

 


