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Abstract:  

A Chest X-ray (CXR) scan is one of the most frequently used in diagnosing several 

thoracic diseases. The conventional interpretation of radiologists for CXRs takes a while and 

depends on participant variation. In recent years, deep learning approaches have become an 

attractive method of automating and enhancing the diagnosis of chest X-ray diseases. Also, deep 

learning could lead to new diagnosis directions, even outside these immediate applications. 

Although there is a lot of promise for deep learning to improve CXR diagnosis, ethical questions 

around accessibility and equity in these algorithms also need to be considered. Moreover, the 

responsible incorporation of deep learning into clinical practice requires close cooperation 

between radiologists and AI developers. This means it may increase productivity and accuracy 

while facilitating access to enhanced chest X-ray examinations in regions with limited resources. 

This work overviews the developments in using deep learning for automatically identifying chest 

X-ray diseases, including approaches, difficulties, and potential future paths. 

1. Introduction:  

Chest problems can be deadly if not caught early enough. Every year, millions die from 

chronic obstructive pulmonary disease (COPD), which is expected to affect sixty-five million 

people globally, according to the World Health Organization (WHO) [1]. The abundance of 

chest X-ray datasets and mutation in the artificial intelligence (AI) field has created a dramatic 

revolution in diagnosing chest X-ray diseases. Also, the chest X-ray field is seeing a global trend 

toward automation, significantly improving diagnostic accuracy and speeding up processing 

procedures. The use of deep learning (DL), a subfield of machine learning in radiography image 

analysis, enables more accurate identification of relevant information and an improved 

interpretation of the data [1].  
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However, it is important to note that the performance of DL models depends on the 

quality and quantity of the training data. Researchers are striving to develop techniques that can 

explain these models' predictions to solve this problem. By doing so, clinicians can understand 

the decision-making process and develop trust in these models. This overview is organized as 

follows: section 2 describes the deep learning models' architecture and how they deal with chest 

X-ray data; Section 3 displays the most important open-access chest X-ray datasets; Section 4 

highlights the previous state-of-the-art studies that have achieved great success in this field; and 

section 5 summarizes some of the challenges that researchers have faced in the past few years. 

2. Deep learning system: 

Deep learning has shown the ability to automate the identification and classification of 

diseases. This work presents the benefits and drawbacks of several learning strategies for 

detecting diseases seen on chest X-rays. 

The core building block of deep learning is neural network architecture, which provides 

the structural stability of complex models. Multiple layers in neural networks enable the model 

to build its architecture automatically from data in deep learning. Convolutional neural networks 

(CNNs) and recurrent neural networks (RNNs) are instances of deep neural network 

architectures that are specifically made to handle many tasks. Deep learning took off in late 2012 

when CNN achieved amazing results in a computer vision battle [2, 3]. When compared to 

standard machine learning techniques that rely on feature engineering by hand, deep learning 

techniques are a great option due to their exceptional capacity to automatically generate a 

hierarchical feature representation of incoming data. CNNs are an effective technique for 

identifying characteristics in the input images. They are also capable of processing three-

dimensional (3D) images in addition to two-dimensional (2D) images. CNNs have been utilized 

recently in a variety of fields, including the interpretation of medical imaging [4]. One of the 

most important things when studying medical images is CNNs' ability to retain the spatial and 

structural information of an image. Convolutional layers, pooling layers, fully connected layers, 

and activation functions (such as the rectified linear unit (RELU)) make up the general 
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architecture of CNNs as seen in Figure 1. Thus, there has been a lot of research done on CNN 

techniques for the analysis of medical images [5]. 

FIGURE 1. A general deep CNN overview of chest disease classification. 

Transfer learning and training from scratch are two approaches forked from deep learning 

systems, as illustrated in Figure 2. These approaches will be discussed in detail in the next 

subsections. 

 

FIGURE 2. The deep learning system for chest X-ray disease detection and classification. 
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2.1 TRANSFER LEARNING: 

Deep learning has revolutionized fields in computer vision. However, a lot of data and 

processing power are frequently needed for these effective models to be trained. This is where 

transfer learning comes into play, providing a quick way to construct deep learning models that 

work well [6]. Transfer learning uses prior knowledge from the source task to reduce training 

time and power usage and shines when data is limited or the task is related to a well-established, 

pre-trained model. 

There are two categories of transfer learning approaches: 

• Methods based on fine-tuning: 

 

In fine-tuning, there is no adding new layers; the pre-trained model's weights can be 

updated slightly during training. Retraining some of the layers of a pre-trained model allows it to 

be adjusted to a new task. As a result, the model can focus on specific features needed for the 

new task. A pre-trained model is selected, much like in feature extraction, but this model is 

partially unfrozen, allowing for the retraining of some of its layers, usually the later ones that 

capture more task-specific characteristics. More broadly applicable features stored in earlier 

layers are frequently maintained frozen. Then a new dataset customized to the intended 

problem is used to retrain the pre-trained model. The model's weights are adjusted during this 

training process to better fit the new task [7]. 

Fine-tuning is possible to perform better than feature extraction and gives a higher accuracy 

when there is enough data available. In addition, it enables the model to pick up task-specific 

features for better performance. However, a greater dataset is needed for the training process,  

which consumes more time than feature extraction [8].  

 

• Methods involving feature extraction: 

 

Here, a pre-trained model used as a feature extractor is selected and learns features ranging 

from low-level (such as edges and shapes) to high-level (such as objects and scenes), which are 
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generally useful for a variety of computer vision and natural language processing tasks, based on 

a large dataset. 

The weights of the previously trained model are frozen, thus preventing future 

modifications to them during training. So, the acquired generic features are maintained. The 

features are output from a certain layer that is often selected towards the earlier phases of the 

pre-trained model. These features extract important data from the input [8]. On top of the pre-

trained model, a new classifier head customized for the goal task is added, and a smaller dataset 

is used to train this classifier. 

Feature extraction has its benefits, such as reducing training time and computational 

resources. Also, for the intended goal, even smaller datasets perform well. However, it has a 

drawback, which is that the complexity of the particular work might not be correctly captured 

[5]. 

 

2.2 TRAINING FROM SCRATCH: 

Training a deep learning model from scratch is similar to building a house from the ground 

up. Building a basic architecture is the start, like a convolutional neural network (CNN) for 

image classification. Then, a massive dataset of labeled examples is fed to the network. The 

model learns by adjusting its internal parameters (like weights and biases) to minimize the error 

between its predictions and the correct labels. This process is computationally expensive due to 

the required graphics processing units  (GPUs) for the training process and time-consuming, 

especially for complex tasks. Training from scratch is ideal for tasks with abundant, high-quality 

data and sufficient computational resources [9]. 

3. Chest X-Ray Datasets: 

Medical image screening technologies, such as ultrasound, CT, MRI, and X-ray imaging, 

help radiologists diagnose organs for abnormalities. Detecting diseases from chest X-ray images 

can be challenging and lead to misdiagnoses. Computer-aided diagnosis (CAD) systems are 
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being developed to address this issue, requiring a large dataset of images and other patient 

information (e.g., age, race, sex, insurance) for training and testing [10]. 

Training models require carefully chosen datasets. The most significant CXR datasets that 

are freely accessible are shown in Table 1, organized from the oldest to the newest. These 

datasets contain several chest diseases that can be classified into three major categories based on 

their dangers. Less dangerous conditions include minor respiratory infections and seasonal 

allergies. These diseases frequently produce minor chest pain, but they usually go away on their 

own or require little medical attention, such as pleural thickening and hernia. The more 

dangerous group comprises chronic diseases that have a major impact on a person's health and 

quality of life but can typically be managed with medical therapy. such as chronic obstructive 

pulmonary disease (COPD) and edema. These diseases can cause major health problems if not 

properly treated, but with the right treatment, people can typically lead quite normal lives. The 

conditions classified as extremely dangerous are those that are severe and potentially fatal. Lung 

cancer, pneumonia, mass, nodule, and advanced pulmonary fibrosis are a few examples. These 

diseases can be fatal if not treated quickly and efficiently, and they demand immediate and 

intensive medical attention [11, 12]. 

Some examples of chest X-rays from the NIH and CheXpert datasets are presented in 

Figure 3. Model performance and generalization are affected by how data is prepared, which 

includes tasks like image normalization, augmentation, and resolving class imbalances. 
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Table 1. Publicly available CXR datasets [13]. 

Dataset Size Classes Collected/Sponsored by Launch Reference 

JSRT 247 images 

(2048 × 2048 

pixels)  

247 patients 

Nodule and no 

nodule 

Japanese Society of Radiological 

Technology 

2000 https://www.kaggle.com/datasets/r

addar/nodules-in-chest-xrays-jsrt 

 

ChestX-ray8 108,948 

images 

(1024 × 1024 

pixels)  

30,805 

patients 

8 findings including 

pneumonia, 

atelectasis, mass, 

pneumothorax, 

infiltration, 

cardiomegaly, 

effusion, and nodule 

From clinical PACS databases in 

the hospitals associated with 

NIHCC 

(National Institutes of Health 

Clinical Center) 

2017 https://nihcc.app.box.com/v/Chest

Xray-NIHCC 

 

Padchest 160,868 

images 

67,000 

patients 

A large number of 

findings 

San Juan Hospital (Spain) 2017 https://bimcv.cipf.es/bimcv-

projects/padchest/ 

 

https://www.kaggle.com/datasets/raddar/nodules-in-chest-xrays-jsrt
https://www.kaggle.com/datasets/raddar/nodules-in-chest-xrays-jsrt
https://nihcc.app.box.com/v/ChestXray-NIHCC
https://nihcc.app.box.com/v/ChestXray-NIHCC
https://bimcv.cipf.es/bimcv-projects/padchest/
https://bimcv.cipf.es/bimcv-projects/padchest/
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ChestX-ray14 112,120 

images 

(1024 × 1024 

pixels)  

32,717 

patients 

14 findings including 

hernia, emphysema, 

edema, Pleural 

thickening, 

pulmonary fibrosis, 

and others 

From clinical PACS databases in 

the hospitals associated to the 

National Institutes of Health 

Clinical Center 

2018 https://nihcc.app.box.com/v/Chest

Xray-NIHCC 

 

RSNA- 

PneumoniaCXR 

15,000 

images 

Pneumonia, 

infiltration, and 

consolidation 

The RSNA (Radiological 

Society of 

North America) and the STR 

(Society of 

Thoracic Radiology) 

2018 https://www.rsna.org/rsnai/ai-

image-challenge/rsna-

pneumonia-detection-

challenge-2018 

 

CheXpert 224,316 

images 

65,240 

patients 

14 findings including  Stanford University Medical 

Center 

2019 https://stanfordaimi.azurewebsit

es.net/datasets/8cbd9ed4-2eb9-

4565-affc-111cf4f7ebe2 

 

https://nihcc.app.box.com/v/ChestXray-NIHCC
https://nihcc.app.box.com/v/ChestXray-NIHCC
https://www.rsna.org/rsnai/ai-image-challenge/rsna-pneumonia-detection-challenge-2018
https://www.rsna.org/rsnai/ai-image-challenge/rsna-pneumonia-detection-challenge-2018
https://www.rsna.org/rsnai/ai-image-challenge/rsna-pneumonia-detection-challenge-2018
https://www.rsna.org/rsnai/ai-image-challenge/rsna-pneumonia-detection-challenge-2018
https://stanfordaimi.azurewebsites.net/datasets/8cbd9ed4-2eb9-4565-affc-111cf4f7ebe2
https://stanfordaimi.azurewebsites.net/datasets/8cbd9ed4-2eb9-4565-affc-111cf4f7ebe2
https://stanfordaimi.azurewebsites.net/datasets/8cbd9ed4-2eb9-4565-affc-111cf4f7ebe2
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MIMIC-CXR 473,057 

images 

(2544 × 3056 

pixels)  

63,478 

patients 

14 diseases (227,943 

imaging studies) 

MIT, Beth Israel Deaconess 

Medical Center (Boston, MA, 

USA) 

2019 https://physionet.org/content/mi

mic-cxr/2.0.0/ 

 

VinDr-CXR 18,000 

images 

28 findings including 

TB, pneumonia, 

cardiomegaly, pleural 

effusion, lung 

opacity, and others 

The Hospital 108 (H108) and the 

HMUH (Hanoi Medical 

University Hospital) 

2020 https://vindr.ai/datasets/cxr 

 

Pediatric- 

CXR 

5856 images Normal, bacterial-

pneumonia, viral-

pneumonia 

Guangzhou Women and 

Children’s Medical Center, 

China 

2022 https://physionet.org/content/vin

dr-pcxr/1.0.0/ 

 

https://physionet.org/content/mimic-cxr/2.0.0/
https://physionet.org/content/mimic-cxr/2.0.0/
https://vindr.ai/datasets/cxr
https://physionet.org/content/vindr-pcxr/1.0.0/
https://physionet.org/content/vindr-pcxr/1.0.0/
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(a) (b) (c) (d)            

Figure 3. Examples of CXR images from NIH and CheXpert datasets [14] include (a) 

nodule disease; (b) emphysema disease; (c) effusion disease; and (d) infiltration disease 

[13]. 

4. Literature review: 

Various methods have been developed for chest disease classification utilizing deep 

learning and chest X-ray images. As mentioned previously, training from scratch and transfer 

learning are the two primary deep learning techniques in this field. This section focuses on the 

most common literature on chest X-ray disease detection and classification that achieved 

milestone benchmarks.  

In 2017, Wang et al. [14] provided the chestX-ray-8 dataset, an enormous amount of data 

larger than prior datasets of its kind. That work was the first to address the issue of building 

hospital-scale radiology image databases with computerized diagnostic performance 

benchmarks. A transfer learning approach of pre-trained deep learning models on ImageNet was 

proposed for the multi-label classification and localization of eight chest X-ray diseases, e.g. 

Atelectasis, Cardiomegaly Effusion, Infiltration, Mass, Nodule, Pneumonia, and Pneumothorax 

depending on four models, e.g. AlexNet, GoogLeNet, VGGNet-16, and Resent-50. Resnet-50 

achieved the highest results in seven of eight diseases, compared with the other three models, 

except the “Mass” disease, which was detected well by the AlexNet model. 

The experimental results of Wang et al. [14] have been evaluated using the Area-Under-

Curve (AUC) values. “Cardiomegaly” (AUC=0.8141) and “Pneumothorax” (AUC=0.7891) are 
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the highest recognition results achieved compared to other diseases. Also, the identification of 

“Mass” (AUC = 0.5609) and “Nodule” (AUC =  0.7164) classes was difficult due to their huge 

variance in appearance. Due to the limited number of cases, "pneumonia" performed worse 

(AUC = 0.6333).  

Wang et al. [14] also introduced an expansion of their dataset, which is termed the chest 

X-ray-14 dataset, by adding 6 more chest diseases, e.g. consolidation, edema, emphysema, 

fibrosis, pleural thickening, and hernia to their disease list, and “hernia” disease achieved the 

best (AUC = 0.87) of all other diseases. 

Although the ResNet-50 model achieved the highest results and played its role as a good 

feature extractor, it can be noticed that training ResNet-50 requires significant computational 

resources, which can be expensive and time-consuming [15]. 

To overcome ResNet-50 model limitations, Yao et al. [16] used the Long Short-Term 

Memory (LSTM) model to recognize the 14 diseases in the chest X-ray-14 dataset. The LSTM 

model was trained end-to-end from scratch, without any pre-training on ImageNet data, to find 

the statistical correlations between labels to generate better predictions, achieving an average 

AUC of 0.798 for 14 diseases. LSTM model exceeded the results of ResNet-50 on all 14 diseases 

except “fibrosis”(AUC = 0.767). But, like other models, the LSTM model has its limitations, 

such as that it can easily overfit the training data. Also, it can be computationally expensive and 

time-consuming due to the huge amount of utilized parameters and high-quality data for the 

training process.  

After some trials, the CheXNet model [17] proposed its way to identify the chest X-ray 

14 [18] diseases from frontal-view chest X-ray images utilizing the pre-trained DenseNet-121 

model, which exceeded trained radiologists and previous models in all diseases, achieving a 

better result with an average AUC of 0.841 for all diseases. Also, in detecting some fatal diseases 

like mass, nodule, pneumonia, and emphysema, CheXNet has a margin of >0.05 Area Under the 

Receiver Operating Characteristic curve (AUROC) over previous state-of-the-art results [17]. 

This technique depends on updating the fully connected layer to extract 14 outputs instead of the 

binary one. Although DenseNet-121 achieved higher accuracy with fewer parameters, it is 
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sometimes regarded as a black box, making it difficult to explain how they make decisions and 

can be biased due to the number of disease images [19].  

Kumar et al. [20] used a cascade neural network, a new artificial intelligence (AI) model, 

to diagnose 14 distinct pathologies in chest X-rays. They fine-tuned their pre-trained 

DenseNet161 model by training the fully connected layer using the ChestX-ray14 dataset. To 

keep the model from being biased because some diseases are more common than others, they 

adopted a technique known as under- and over-sampling. Their model performed as well as other 

state-of-the-art AI models, and it achieved an average AUC of 79.50%. 

Victor Ikechukwu et al. [21] investigated two approaches to identifying pneumonia in 

chest X-rays. To achieve high validation accuracy, they first used pre-trained models such as 

VGG-19 and ResNet-50, which were able to extract features from a large image dataset. 

However, due to limited resources, they chose ResNet-50 over ResNet-101. Second, they created 

a convolutional neural network (CNN) from scratch and trained it purely for pneumonia 

diagnosis. While this strategy demonstrated promise (over 93% accuracy), it fell short of the 

overall efficiency of pre-trained models, which achieved near-perfect accuracy (over 97%) in 

identifying pneumonia. 

Detecting pneumonia on chest X-rays is difficult for radiologists since it could look like 

other, less serious diseases and is difficult to distinguish from other diseases. Researchers have 

developed many ways to avoid misdiagnosing pneumonia [22]. So, Ma and Lv [23] developed a 

promising deep-learning model called the Swin transformer. A transformer network is employed 

for feature extraction, while a fully connected network is used for the classification and diagnosis 

of pneumonia disease in chest X-ray (CXR) images and COVID-19 computed tomography CT 

images [24]. They tested their model against various types of deep convolutional neural network 

(DCNN) models on two separate datasets of CXR images. On the datasets utilized, their model 

outperformed DCNNs with an accuracy of approximately 87.3% for the Swin transformer on all 

14 diseases, and that result exceeded previous state-of-the-art due to the strength of the Swin 

transformer in efficiently processing high-resolution images, which is critical for capturing 

medical details [23]. However, Swin Transformer training can be computationally expensive due 

to the required powerful GPUs. 



Alaa A. Eldewer et al.                                                                      J. Sci. Res. Sci., 2024,41, (1),59:77 

71 

 

Yu. Gordienko et al. [25] focused on how dimensionality reduction techniques can 

improve the performance of deep learning models used to classify lung cancer using chest X-

rays. The researchers trained deep learning models on the JSRT dataset, most likely employing 

ways to reduce image dimensionality (which could minimize the number of features evaluated). 

The authors discovered that using several preprocessing techniques to reduce the complexity of 

the chest X-ray data significantly improved the performance of a simple convolutional neural 

network (CNN) model, particularly on a small dataset with imbalanced classes. Also, techniques 

such as lung segmentation, bone removal, and outlier filtering increased the CNN model's 

training speed and accuracy when compared to raw data. Furthermore, the authors proposed 

additional ways for higher performance and enhancement that are possible by removing shadows 

from other organs (such as the arms and heart) by utilizing sophisticated segmentation methods.  

Also, they proposed that increasing the size and complexity of the CNN model (>10 layers) and 

fine-tuning it will improve accuracy. This is comparable to how successful models such as 

CheXNet achieve great performance. 

J. Irvin et al. [26] presented a CheXpert dataset, a huge amount of chest X-rays that 

contain life-threatening thorax diseases, e.g., edema, cardiomegaly, lung opacity, lung lesion, 

consolidation, pneumonia, atelectasis, pneumothorax, and others. The authors evaluated a 

baseline deep learning model trained on the CheXpert dataset for classifying various chest 

diseases. The addition of uncertainty labels in their work was one of the dataset's distinguishing 

characteristics, which were used to express their level of confidence in the diagnosis of each 

image. This allows the model to learn from the inherent confusion in real-world clinical practice. 

The training labels in the dataset for each observation are either 0 (negative), 1 (positive), or u 

(uncertain). Several convolutional neural network architectures were used in the training process, 

specifically ResNet152, DenseNet121, Inception-v4, and SEResNeXt101, and it was found that 

the DenseNet121 architecture achieved the best results, especially for cardiomegaly (AUC = 

0.854) for the U-multi-class model (positive), whereas the U-Ignore (negative) model achieved 

(AUC = 0.828) the uncertainty label. 

Aurelia Bustos et al. [27] focus on introducing the PadChest dataset rather than 

evaluating classification methods for chest diseases. Radiologists' reports included specific labels 

for findings, diagnoses, and anatomical locations. The authors identified specific findings on X-
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rays, such as nodules, tuberculosis,  and infiltrates.  

They also proposed a technique for creating labels: a combination of manual annotation by 

clinicians and a supervised algorithm based on recurrent neural networks (RNN). Neural 

networks with attention mechanism (RNN-ATT) architecture used to create these multi-label 

annotations achieved the best result for both validation (AUC = 0.864) and test sets (AUC = 

0.857). 

In 2021, Joseph Paul Cohen et al. [28] introduced TorchXRayVision, which is an open-

source package created specifically for working with chest X-ray datasets and deep-learning 

models. This work not only provided a common interface for several publicly available chest X-

ray datasets but also made it easier to access and switch between datasets during model training 

or evaluation. To serve as feature extractors, the package also provided several classification and 

representation learning models,  such as ResNet-50, ResNet-18, and DenseNet-121, with various 

architectures that were trained on nine tremendous chest X-ray datasets that contain about 18 

chest pathologies, e.g., Lung Opacity, Lesions, Edema, and others. 

5. Conclusion: 

Although deep learning approaches are strong tools for classifying chest diseases and 

have the potential to change diagnoses completely, there are still certain fundamental limits that 

researchers are actively working to overcome. It also needs a lot of experience (data) and may 

make mistakes when using something new. This makes it difficult to use everywhere and can 

result in errors. Still, it's a very effective tool, and improvements are always made! 

Transfer learning and training from scratch represent two distinct approaches to building 

deep learning models. While training from scratch gives you total control and flexibility, it also 

uses a lot of processing power and data. On the other hand, transfer learning uses the information 

from previously trained models, greatly reducing the time and data needed for training. 

The requirements of the task determine the best strategy to use. Training from scratch 

could be helpful if there is abundant data and processing power. However, transfer learning has a 

significant benefit for the majority of real-world uses. Through the strategic use of feature 

extraction and fine-tuning methods, it is possible to create pre-trained models for several tasks 
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with a small amount of data.  Transfer learning will probably stay a key component for creating 

strong and effective models in various applications as deep learning advances. 

6. Conflict of Interest: 

All authors declare that they have no conflicts of interest. 

 

7. Future Directions: 

The future of deep learning work revolves around choosing whether to build models from 

scratch or fine-tune existing ones. The balance tends towards fine-tuning due to its ability to 

adapt to specific tasks quickly. Fine-tuning is a more realistic option since it enables us to utilize 

prior knowledge as a result of the growing complexity of tasks and the vast amount of data being 

generated. However, the decision depends on the specific problem, available data, and 

computational resources, as each approach has its strengths and limitations. The key to future AI 

success lies in finding the right balance between model understanding and deployment 

efficiency. 
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 الملخص العربي

 السينية  التطور في استخدام أساليب التعلم العميق لتشخيص أمراض الصدر بالأشعة

 1هيام عادل عبد العظيم -2عائشة عبد الحميد سليمان  -*1آلاء عبد اللاه الدور

الآلى  1 والحاسب  الفيزياء  الفيزياء    –شعبة  والتربية    –قسم  والعلوم  للآداب  البنات  شمس    –كلية  عين    –القاهرة    –جامعة 

 جمهورية مصر العربية. 
جمهورية مصر    –القاهرة    –جامعة عين شمس    –كلية البنات للآداب والعلوم والتربية    -قسم الفيزياء    –شعبة فيزياء الجوامد  2

 العربية.

 :الملخص العربي

الإيعُدُّ   الفحوصاتالتصوير  أكثر  أحد  للصدر  الصدر  الطبية  شعاعي  أمراض  من  العديد  تشخيص  في   حيث   استخدامًا 

وقتاً  منيستغرق   الإشعاعية    الأطباء  الصور  هذه  لتفسير  لآخر  ويختلفطويلا  طبيب  من  التفسير  في    هذا  الخبرة.  باختلاف 

الصدر  أمراض  لتحسين تشخيص  العميق طريقة جذابة  التعلم  تقنيات  أصبحت  الأخيرة،  تلقائي السنوات  أن بشكل  يمكن  كما   .

ليس فقط تشخيص المرض بحسب ولكن أيضا إظهار تلك العلاقة الوثيقة بين   يؤدي التعلم العميق إلى اتجاهات تشخيصية جديدة

، أمراض الصدربتحسين تشخيص  نتائجا واعدة أن التعلم العميق أظهر على الرغم من و. هذه الأمراض وارتباط بعضهم بالآخر

علاوة على   الخوارزميات.هذه    مدي شفافيةو  لتلك القرارات  الوصولكيفية  الأخلاقية حول    النظر في المسائلإلا أنه يجب أيضًا  

التعلم العميق في الممارسة ال يتطلب تعاونًا وثيقًا بين أطباء الأشعة ومطوري الذكاء الاصطناعي. وهذا   طبيةذلك، فإن إدماج 

أنه يمكن أن يزيد   الطبي  ودقة  من سرعةيعني  التصوير الإ  التشخيص  إلى فحوصات  الوصول  للصدر في  مع تسهيل  شعاعي 

أمراض الصدر تلقائيًا، بما    شخيصالمناطق ذات الموارد المحدودة. يستعرض هذا العمل التطورات في استخدام التعلم العميق لت

 .والصعوبات والمسارات المستقبلية المحتملة المتبع في اتخاذ القرار في ذلك النهج

 

 


