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Abstract 

This paper explores the integration of deep learning—a subset of AI— with plant 

pathology to revolutionize diagnosis using a MobileNetV2 CNN trained on the Plant Village 

dataset (31,718 training, 4,514 test images). Our approach achieved 99.4% validation 

accuracy, highlighting practical potential for early detection and reduced pesticide use, 

aligning with sustainable agriculture. The study reviews CNNs, GANs, data challenges, and 

future integration with IoT and drones for smarter disease management. It explores the 

integration of deep learning—a subset of AI— with plant pathology to revolutionise the 

diagnosis and treatment of plant diseases, a crucial concern for global food security. By 

harnessing the capabilities of deep learning algorithms to analyze and interpret complex 

patterns in image data, researchers and practitioners can identify plant diseases with 

unprecedented accuracy and speed. This advancement not only facilitates early detection and 

treatment but also minimizes the reliance on chemical interventions, aligning with 

sustainable agriculture practices. A thorough examination of contemporary methods, 

including convolutional neural networks (CNNs) and generative adversarial networks 

(GANs), this study illustrates the significant strides made in automating disease detection. 

Furthermore, the paper delves into the challenges and opportunities that lie ahead, such as 

data scarcity, the need for dataset diversity, and the integration of AI tools into existing 

agricultural frameworks. By providing a synthesis of current research and potential future 

directions, this study aims to shed light on the transformative impact of AI on plant pathology 

and the broader implications for agritech innovation 

Keywords: Agricultural Technology, Artificial Intelligence, Plant Disease Detection, 

Food Security, Crop Health Management, Agritech Innovation. 

1. Introduction 

The accurate detection of plant diseases through image analysis is a breakthrough 

application of AI, critical for global food security. Deep learning enables early, precise 

detection, reducing crop loss. Previous studies illustrate this promise: Mohanty et al. [1] 

proved CNN feasibility, Too et al. [2] optimized model fine-tuning, Barbedo [3,4] analyzed 
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lesion-level detection, while Liu and Wang [5] and Li et al. [6] surveyed AI adoption 

challenges. GANs by Li et al. [9] enabled unsupervised learning, and Ale et al. [14] linked 

detection systems to resource efficiency, though field variability remains a hurdle [7,10]. 

The ability to accurately detect plant diseases through image analysis has emerged as 

a groundbreaking application of artificial intelligence (AI) that promises to revolutionize the 

agricultural sector [1]. Too et al. [2] conducted a comparative study to investigate the fine- 

tuning of deep learning models for plant disease identification, emphasising the relevance of 

model optimisation in reaching high accuracy. Barbedo's work is another example of how 

deep learning applications in plant disease detection have evolved. [3,4], which delves into 

the identification of diseases from individual lesions and spots, emphasizing the granularity 

at which these models can operate. Moreover, the review by Liu and Wang [5] and the 

comprehensive analysis by Li et al. [6] encapsulate the progress and challenges within this 

field, providing a broader perspective on the potential of deep learning in combating plant 

diseases. Li, Jia, and Xu [9] introduces a new dimension to the automation of disease 

identification, leveraging the capabilities of AI to learn from unlabelled data. 

Fuentes et al. [10] investigated deep learning-based algorithms for plant disease 

recognition in real-world scenarios, highlighting the practical consequences and operational 

constraints of implementing these technologies. The collective insights from these studies 

[1-10] not only highlight the technical advancements but also underscore the significance of 

interdisciplinary collaboration in bridging the gap between AI and plant pathology for 

superior disease identification and management. Disease manifestations in plants can vary 

significantly due to factors such as lighting conditions, camera angles, and the developmental 

stages of the plant or disease [4, 7]. These variabilities necessitate robust models that can 

generalize well across different conditions, a task that has proven to be complex and 

demanding. The meticulous process of labeling images with specific disease markers is time- 

consuming and requires extensive expertise in plant pathology [3, 22]. While the potential 

benefits are immense, the practical aspects of deploying deep learning models on-field, such 

as hardware requirements, real-time processing needs, and the adaptability of these systems 

to current agricultural practices, require careful consideration and innovative solutions [10, 

14]. 

Mohanty et al. [1] demonstrated the feasibility and effectiveness of utilising 

convolutional neural networks (CNNs) to detect plant diseases in images. Building on this 
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basis, Too et al. [2] performed a comparative analysis on fine-tuning deep learning models 

for plant disease detection, emphasising the relevance of model optimisation in achieving 

high accuracy rates. Barbedo [3,4] broadened the area of research by applying deep learning 

to detect plant illnesses in particular lesions and patches. The versatility of deep learning in 

solving multiple issues in plant disease detection is also shown in Liu and Wang's review 

[5], which provides a complete summary of the advancements and barriers to adopting AI 

for this purpose. Li, Jia, and Xu [9] used generative adversarial networks (GANs) for 

unsupervised learning in plant disease diagnosis, which is an innovative approach. illustrate 

the expanding toolkit of AI techniques available to researchers. As the body of literature 

grows, the contributions from studies like those by Fuentes et al. [10], which investigates 

deep learning-based strategies for plant disease recognition in real-world contexts, 

continuing to push the frontiers of what is feasible. Jakjoud et al. [11] described deep learning 

applications for plant disease diagnosis, emphasising the relevance of neural network designs 

in improving disease identification precision. Ghesquiere and Ngxande [12] investigated the 

deep learning frontier for plant disease diagnosis, providing a more nuanced understanding 

of its applicability across different crops. 

The hierarchical deep learning approach proposed by Cósta et al. [13] introduced a 

novel perspective on disease detection. Incorporating AI into smart agriculture, Ale et al. 

[14] focused on developing deep learning-based plant disease detection systems that are not 

only accurate but also resource-efficient. Akhtar et al. [15] tackled the challenge of deep 

learning approach implementation for plant disease detection, emphasizing the importance 

of model accuracy and computational efficiency. The review by Liu and Wang [5], and the 

comprehensive analyses by Li et al. [6], offer broader insights into the progression of AI 

applications in agriculture. The exploration of unsupervised learning techniques by Li, Jia, 

and Xu [9] represents a significant methodological innovation, addressing one of the key 

challenges in AI-driven plant pathology: the need for extensive labeled datasets. These 

studies collectively emphasize the transformative impact of deep learning on plant disease 

detection. From enhancing model accuracy and efficiency [15] to exploring innovative 

architectures [13] and adapting AI technologies for sustainable agricultural practices [14], 

the contributions from this body of work are pivotal. 

The balance between leveraging AI for greater good and protecting the rights and 

privacy of farmers and agricultural entities is a delicate one [24]. The discrepancies between 
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controlled accuracy rates and field application effectiveness highlight the need for more 

adaptive, resilient, and scalable solutions that can operate under less-than-ideal conditions 

[7, 10]. 

These challenges, ranging from technical hurdles to ethical concerns, underscore the 

need for a multidisciplinary approach. Combining expertise from AI, plant pathology, 

agricultural science, and ethics will be crucial in overcoming these obstacles and unlocking 

the full potential of AI in agriculture. 

2. Challenges in deep learning for plant disease detection 

The challenges are 

• Data Variability and Quality: Illumination, angles, leaf stage variations degrade 

performance; Ale et al. [14] saw a 12% field accuracy drop. 

• Limited and Unbalanced Datasets: Labeling large diverse sets is costly, often biased 

[22,24]. 

• Integration with Practices: Farmer training needed, resistance possible. 

• Real-time Processing: MobileNetV2 ensures fast inference, yet edge hardware remains 

essential. 

• Ethical and Privacy: Data use must protect farmers [24], motivating federated learning. 

• Scalability: Models trained in one region may fail elsewhere [10]. 

 

Despite significant advances in using deep learning to detect plant diseases, various 

difficulties remain, hindering the route to mainstream adoption and use of these technologies 

in agriculture. Data Variability and Quality: One of the most difficult issues in training deep 

learning models is the inherent variability and occasionally poor quality of agricultural data. 

Variations in illumination, camera angles, backdrop clutter, and plant physical state can all 

have a substantial impact on model performance. This heterogeneity needs the creation of 

strong models capable of generalising across several situations, which is still a difficult 

undertaking. 

Limited and Unbalanced Datasets: The availability of big, annotated datasets is 

critical for training accurate and dependable deep neural networks. However, collecting and 

annotating such datasets can be resource-intensive and time-consuming [22]. Furthermore, 

datasets may be imbalanced, with some diseases overrepresented and others 

underrepresented, resulting in biassed model predictions [24]. Integration with Existing 
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Agricultural Practices: Fitting deep learning technology into existing agricultural workflows 

poses operational hurdles. Farmers and agricultural practitioners may need additional 

training to use these technology efficiently, and there may be opposition to adopting new 

approaches over traditional ones [14]. 

Real-time Processing Requirements: To be useful in the field, deep learning models 

must be able to interpret data and provide diagnoses in real time. However, the computational 

needs for such processing might be significant, necessitating the creation of efficient 

algorithms and the utilisation of specialised hardware [15]. Interdisciplinary Collaboration: 

Developing successful deep learning models for plant disease detection necessitates 

collaboration among various fields, including computer science, plant pathology, and 

agronomy. Bridging the gap between these domains to support collaborative research efforts 

is critical, but it can be difficult due to disparities in terminologies, study aims, and 

methodology [5]. 

Ethical and protection Concerns: As with any AI application, there are ethical 

concerns to be made, particularly in terms of data protection. The collecting and use of 

agricultural data must be done in a way that protects the privacy and rights of farmers and 

landowners [24]. Scalability and Generalisation: Another key problem is ensuring that deep 

learning models are scalable and generalizable to multiple areas, crops, and disease kinds. 

Models trained on data from one geographic area or crop type may not perform well when 

applied to another, limiting their usefulness throughout the global agricultural spectrum [10]. 

Cost of Implementation: Many small to medium-sized agricultural companies may 

find it prohibitively expensive to install deep learning technology, both in terms of the initial 

investment in hardware and software and the continuous costs of operation and maintenance 

[14]. Overcoming these issues will necessitate collaborative efforts from researchers, 

technologists, and the agricultural community. Innovations in deep learning methodologies, 

as well as strategies for encouraging interdisciplinary collaboration and making AI 

technologies more accessible and user-friendly, will be critical to advancing the field and 

realising AI's full potential in combating plant diseases and improving global food security. 

3. Methodological innovations and adaptation 

We addressed limited labeled data using transfer learning on MobileNetV2 pretrained 

on ImageNet, tailored for plant leaf classification. This reduced need for extensive local 
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annotation. Edge computing considerations prepare for IoT deployment. Automated 

annotation tools streamlined dataset prep, while advanced augmentation (rotation, scaling, 

color changes) improved robustness. Several methodological advancements and adaptations 

have been created to improve the efficacy of deep learning models for detecting plant 

diseases. 

Enhanced Data Augmentation Techniques: 

To address the issue of data unpredictability and limited datasets, researchers used 

advanced data augmentation techniques. These approaches provide variation to training 

datasets by performing changes such as rotation, scaling, and colour adjustment to existing 

images [22]. This method increases model robustness to differences in image quality and 

presentation. 

Transfer Learning and Pre-Trained Models: 

Transfer learning has emerged as an effective approach for overcoming the 

limitations of small, annotated datasets. Researchers can achieve excellent accuracy with 

minimal data by fine-tuning models that have already been trained on big image datasets 

[27]. This strategy has greatly accelerated the creation of accurate plant disease detection 

models. Federated Learning for Privacy Preservation: Federated learning provides an 

innovative solution to data privacy concerns. This technology enables the training of deep 

learning models across several decentralised devices that contain local data samples without 

the need to exchange them. This technique protects farmers' data privacy while leveraging 

collaborative insights [24]. Edge Computing in Real-Time Analysis: To meet the need for 

real-time processing, edge computing has been integrated into deep learning systems for 

plant disease diagnosis. This entails processing data on local devices near the data source, 

lowering latency, and providing immediate diagnostic feedback in the field [14]. 

Interdisciplinary Collaborative Frameworks: 

To bridge the gap between AI and agricultural expertise, collaborative frameworks 

have been developed. These programmes promote information and resource sharing among 

computer scientists, agronomists, and plant pathologists, resulting in inventions that are both 

technically sound and agriculturally relevant [5]. Automated and semi-automated annotation 

technologies have been created to reduce the time and effort required for dataset annotation. 

Using AI to pre-annotate photos, which are then checked or rectified by human specialists, 

has sped up the compilation of huge, high-quality datasets for training [22]. 
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Scalable and adaptable Model Architectures: 

New model architectures that are both scalable and adaptable have been proposed to 

overcome the scalability and generalisation problems. These models are meant to adapt their 

complexity to the task's individual requirements, enabling for efficient deployment over a 

wide range of crops and environments [10]. The subject of deep learning for plant disease 

identification is constantly evolving as a result of these methodological breakthroughs. Each 

adaptation not only marks a step forward in tackling individual difficulties, but also adds to 

the overall objective of using AI to ensure sustainable global food production. 

4. Background 

We selected mobilenetv2 for its inverted residuals and lightweight convolutions, 

balancing accuracy with speed for embedded deployment. Its pretraining on imagenet 

allowed effective fine-tuning on plant disease data, ensuring scalable, field-ready models. 

Artificial Neural Networks (ANNs) were modelled after the human brain's ability to analyse 

and comprehend information. An artificial neural network (ANN), similar to the human 

brain, is made up of a directed graph with interconnected nodes known as "neurons". These 

networks excel at recognising complex models and patterns that humans or traditional 

computing methods may find difficult to detect. An artificial neural network (ANN) is an 

appropriate tool for "what-if" research because, when correctly trained, it functions as a 

domain-specific expert, anticipating outcomes for incoming data and dealing with 

hypothetical scenarios.There are many different forms of neural networks, including 

Convolutional Neural Networks (CNN), Multilayer Perceptrons (MLP), and Recurrent 

Neural Networks (RNN), to name a few. Regular neural networks, or MLPs, were initially 

utilised for image classification, but as image resolution rose, they quickly proved to be 

computationally and parameter heavy. CNNs were created to circumvent these 

limitations.MobileNetV2 is a convolutional neural network design that seeks to perform well 

on mobile devices. Its base is an inverted residual structure, which connects the bottleneck 

layers via residuals. The intermediate expansion layer uses lightweight depthwise 

convolutions to filter features, which is a source of nonlinearity. The first completely 

convolution layer with 32 filters comprises the entirety of MobileNetV2's design. It is 

followed by 19 remaining bottleneck levels. There are numerous advantages to classifying 

photos with MobileNetV2. First and foremost, its small architecture allows for effective 

installation on embedded and mobile devices with limited computing capability. Second, 
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when compared to larger and more computationally expensive models, MobileNetV2 has 

comparable accuracy. 

Finally, the model is suitable for real-time applications because to its small size, which 

enables faster inference times. 

5. Materials and methods 

We used the Plant Village dataset  (31,718  training,  4,514 test images), split 

~87.5%/12.5%, with 5-fold cross-validation for robustness. Our CNN model received 

(224,224,3) images and output class probabilities over 20 plant disease categories. The 

experimental data came from the University of Pennsylvania's Plant Village public database. 

There are 61 categories in total, organised by "speciesdisease-degree." The categories 

contain ten species, 27 diseases (24 of which are classified as general or severe), and ten 

health classes. includes, as seen in Fig. 1, 31,718 images in the training set and 4514 images 

in the test set. It is evident that there are certain parallels and distinctions throughout the 

classes. Selecting useful characteristics is essential. 
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Fig.1. Visualize leaves class distribution. 
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Fig.2. Experiment database. 

 

6. Proposed framework 

The implementation of deep learning plant disease detection involves not only the 

development of algorithms but also the compilation and use of extensive datasets that cover 

a wide range of plant species and associated diseases. The datasets play a crucial role in 

training and testing the models to ensure they can accurately identify specific diseases under 

various conditions. Here, we discuss the composition of such datasets and the strategies for 

their effective implementation in AI-driven diagnostic tools. 

Plant disease detection datasets are comprehensive collections of photos divided into 

multiple classes, each representing a different plant illness or a plant in good health. For 

example, classes may include diseases affecting a single crop, such as Apple (e.g., Apple 

scab, Black rot, Cedar apple rust, healthy), as well as diseases affecting multiple crops, such 

as Tomato. These datasets may also cover illnesses in crops such as corn (maize), grapes, 
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oranges, peaches, peppers, potatoes, raspberries, soybeans, squash and strawberries, 

including both infected and healthy samples. Fig 2 depicts the many classes of the dataset. 

The process of creating these databases entails carefully gathering photos from a variety of 

sources, including agricultural fields, laboratories, and repositories. To ensure appropriate 

classification, trained plant pathologists thoroughly annotate each image. This annotation 

process is crucial since the dataset's reliability has a direct impact on the trained model's 

performance. 

One of the primary challenges in dataset compilation is ensuring diversity and 

representativeness. Images must capture the diseases at different stages and under various 

environmental conditions to train models that are robust and can generalize well. 

Additionally, balancing the dataset to prevent bias towards certain diseases or conditions is 

essential for the equitable performance of the model across all classes. For the effective 

implementation of deep learning models for plant disease detection, it's crucial to leverage 

these datasets in training convolutional neural networks (CNNs) and other AI architectures. 

The model's architecture must be designed to handle the intricacies and variations within the 

dataset, employing techniques such as transfer learning to enhance learning efficiency with 

pre-trained models on large image datasets. 

6.1 Modeling 

 

MobileNet Classifier: The MobileNetV2 framework (as shown in Fig. 3), which 

expands upon the core MobileNet architecture. The insertion of linear bottlenecks positioned 

between layers and the addition of shortcut connections that cross these bottlenecks are what 

set MobileNetV2 apart. Similar to its forerunners, MobileNetV2 gains strong feature 

extraction capabilities by pretraining on the ImageNet dataset. Its adaptation for our 

particular classification objective involves deleting the top layers that were designed with 

ImageNet classification in mind. The output of the base MobileNetV2 is then passed via four 

Dense layers, each of which has fewer nodes than the previous one and uses the "relu" 

activation function. Dropout layers are included after each Dense layer to mitigate potential 

overfitting. 
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With 10 nodes and a "SoftMax" activation mechanism (as shown in Fig. 4), the final Dense 

layer is designed with multi-class classification in mind. We used the Tensor-Flow Keras 

API to materialize this structure, setting it up to take in images with dimensions of (224, 224, 

3) and generate a probability distribution over the 20 classes. (as shown in Fig. 5, Fig 6), 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. The methodology pipeline of the plant diseases detection using MobileNet V2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4. Schema for CNN for the classification of leaf plant diseases 
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Fig.5. Confusion Matrix 
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Fig. 6. Block diagram for Visualize model architecture 
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Training the Model: After the model has been assembled, it must be trained using a 

training dataset. The model's compilation requires the specification of the following 

parameters: Because it consistently results in a smoother path than alternative optimisation 

strategies, we have employed the Adam optimisation methodology. Adam is an optimisation 

approach that creates more effective neural network weights by utilising adaptive moment 

estimation . With betas = (0.9,0.994) and epsilon = 1e-08, learning_rate = 5e-5, we have 

utilised Adam as the optimizer. loss → We have applied "sparse categorical cross entropy" 

in this instance. For integer objectives, sparse categorical cross entropy may be utilised in 

place of categorical vectors . 

7. Results and discussion 

Using MobileNetV2, we achieved 99.4% validation accuracy. Additional metrics: 

Precision=0.993, Recall=0.992, F1=0.993. Compared to Too et al. [2]'s ~97.8%, our model 

improved resilience to variation. (as shown in Fig. 7), This section presents the results 

acquired using the convolutional neural network architectures described in the experimental 

setup . This section will go into detail about the findings obtained through the implementation 

of this research. Using MobileNet V2, the data was successfully identified with 99.4% 

accuracy, and all types of vegetables and fruits, as well as the plant's leaf, were discovered. 

(as shown in Fig. 8 and Fig. 9), its performance will be analyzed in terms of accuracy. 

Fig. 7. Output for True and Predicted Output 
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The MobilenetV2 reaches up to 99.4% accuracy for validation in 10 epochs. 
 

 

Fig.8. Model_accuracy 
 

 

Fig.9. Model Loss 

 

8. Conclusion and future work 

Early plant disease detection using MobileNetV2 advances SDG 2 (Zero Hunger) and 

SDG 12 (Responsible Consumption). Future work includes IoT drones for live field data to 

improve scalability and precision. Inclusion, Early detection of plant diseases is critical for 

reducing crop output losses. Deep learning models, such as Mobile Net, can detect plant 
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diseases with high accuracy. The study emphasises the importance of evaluating models 

using field-based databases to fully understand their capabilities. The proposed technology 

employs Mobile Net to identify disease kinds in plant leaf photos. This discovery has the 

potential to improve the efficiency with which diseases are identified and treated in 

agriculture. In the future, we hope to increase accuracy by connecting it with drones and IoT 

devices. 
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