Synthesis, Characterization and Optimization of PCL-based Nanocapsules for Delivery of Anticancer Chemotherapeutic Drug

Omnia Mahareek¹*, Abdelgawad Fahmi², Mariam Abdur-Rahman², Mohamed A. Shemis¹

¹Department of Biochemistry and Molecular biology, Theodor Bilharz Research Institute, Egypt.
²Department of Chemistry, Faculty of Science, Cairo University, Egypt.

Abstract
Nanocapsules based drug delivery system has provided an efficient tools in cancer treatment in recent times. The toxicity of anticancer drugs can be decreased through nano-encapsulation using polymeric nanocapsules. This study aimed to synthesis, optimization and characterization of doxorubicin (Dox) loaded biodegradable polycaprolactone (PCL) nanocapsules. Dox loaded PCL nanocapsules were prepared by double emulsion method using dichloromethane as the organic solvent, and polyvinyl alcohol as the external aqueous phase. Formulation parameter such as the effect of weight ratio of drug to polymer was optimized for the synthesis of Dox-PCL nanocapsules. Different weight ratio of Dox loaded PCL nanocapsules (1:20), (1:50) and (3:10) were prepared. Dox-PCL nanocapsules of weight ratio of 3:10 mg had higher DL of 16.88 % than other cases and its average size determined by dynamic light scattering (DLS) was 212 nm. The TEM image revealed that the prepared nanocapsules were spherical in shape in all cases. Also, ZPs were greater in case of Dox-PCL with ratio of 3:10 mg than other cases, which suggests good stability these synthesized nanocapsules. Finally, these results indicate that the properties such as DL %, morphology, size and surface charge of the nanocapsules colloidal suspension were better with decreasing the amount of PCL and increasing the amount of Dox.

Keywords
Doxorubicin; Polycaprolactone; Double emulsion; Nanocapsules; Chemotherapeutic drug

*Corresponding author: Omnia Maher Omnia_2516@yahoo.com
Introduction

Globally, Liver cancer is considered as the second cause of death and it has around 850,000 new cases annually (Llovet et al., 2016). In Egypt, Liver cancer constitutes 1.68% of the total cancer cases and HCC accounts for 70.48% of all liver tumors among Egyptians (Holah et al., 2015). Patients with cirrhosis exhibit a high probability of developing HCC. Many factors such as infection with the hepatitis B or hepatitis C viruses, alcoholism, can lead to the development of cirrhosis (Chuang et al., 2009). Examples of chemotherapeutic drugs used to inhibit the progress of advanced liver cancer, HCC are cyclophosphamide, cisplatin, 5-fluorouracil and doxorubicin (Wójcik et al., 2015).

Doxorubicin hydrochloride (Dox) \((\text{C}_{27}\text{H}_{30}\text{ClNO}_{11})\) is one of the most commonly used chemotherapeutic drugs for HCC treatment since its inception in the 1960 (Mohan and Rapoport, 2010). Mechanism of action of doxorubicin hydrochloride (DOX) is to inhibit the DNA polymerases and topoisomerases and block the cell cycle, resulting in the induction of apoptosis in tumor cells (Tacar et al., 2010). The main obstacle that faces the treatment with Dox is its heavy poisonous side effect on cancer cells as well as normal cells, which reduces its therapeutic effect and use in the clinical practice (Hu et al., 2007). The advances in nanotechnology have provided powerful and efficient tools in the development of cancer diagnosis and therapy (Devulapally and Paulmurugan, 2014).

Biodegradable polymeric nanocapsules, which capable of delivering a wide range of drugs for a sustained period of time into the target sites in a slow release manner, have already shown important improvements in cancer therapy (Chen et al., 2012; Liu Y and Zhang, 2012). Encapsulating Dox into nanoparticles had shown improvements in its biodistribution within the body. Currently, most work involving Dox entrapment into nanocarriers have been performed using polymeric nanocapsules (Fundar et al., 2010). Polycaprolactone (PCL), a biodegradable and biocompatible polymer, which approved by FDA, is useful to encapsulate a wide range of drugs, making it an interesting material for the preparation of carriers with potential applications in therapy (Pohlmann et al., 2013).

The aim of the present study was the synthesis of polymeric nanocapsules with an aqueous inner core enclosed by an organic layer and both are surrounded by an outer aqueous shell which can readily incorporate the anticancer drug Dox into their cores, whereas the
hydrophilic outer shell can provide stabilization for the nanocapsules. Different weight ratio of Dox-PCL nanocapsules (1:20), (1:50) and (3:10) were prepared by double emulsion technique. Thus, making Dox: PCL nanocapsules with high drug loading for chemotherapeutic applications, to reduce its cytotoxicity against normal cells and increase its therapeutic effect against cancer cells.

Materials and methods

Material

Polycaprolactone (Mw. 10 000 Da), polyvinylalcohol (PVA) (Mw: 13,000–23,000 Da), were obtained from (Aldrich, UK). Doxorubicin.HCl solution was purchased from (Ebewe Pharma, Australia). Dichloromethane (DCM) from (Carlo, UK), Polyethylen glycol (PEG) (Mw: 8000 Da) from (Fisher, USA).

Methods

Preparation of Dox-PCL nanocapsules

Dox-PCL nanocapsules were produced by modified double emulsion technique (W/O/W) with different weight ratio of Dox to PCL of (1:20), (1:50) and (3:10) (Katata et al., 2012). Briefly, Dox.HCl solution was emulsified with PCL dissolved in 8 ml DCM using high speed homogenizer (Tekmar, UK) for 3 min at 5,000 rpm to create the first emulsion phase of water-in-oil (W1/O). Then, the first emulsion is transferred to an aqueous solution containing 35 ml 2 % PVA and 5 ml 0.5 % PEG and are homogenized for 5 min at 8,000 rpm to form the second emulsion phase (W1/O/W2). The resulting mixture was left stirring on magnetic stirrer (C-MAG HS 7, IKA, China) overnight at room temperature, in dark. After evaporation of DCM, the remaining solution was centrifuged using ultracentrifuge (supra25K, Hanil science industrial, Korea) for 1 h at 13,000 rpm and 10 °C. Finally, the supernatant was transferred to new tube and the pellet was resuspended in 2 ml deionized H2O and directly fed into the freeze dryer (Edwards Modulyo, UK) to produce dried powder of Dox- PCL nanocapsules, which was then collected and kept at 4 °C.

Evaluation of Dox encapsulation efficiency and drug loading

The encapsulation efficiency (EE %) and drug loading content (DL%) of Dox-PCL nanocapsules were indirectly quantified using the supernatant after centrifugation of the final nanoemulsion solution at 13,000 rpm for 1 h by UV–visible spectrophotometer (Model:
se6100 UV-Vis double beam, Abbota corporation, USA) (Zhang et al., 2015). EE % and DL % were measured using the following equation (1) and (2):

$$EE(\%) = 1 - \frac{\text{conc of free Dox}}{\text{conc of total Dox}} \times 100$$

$$DL(\%) = \frac{\text{M of Dox} \times \text{EE}}{\text{M of Dox} + \text{M of Polymer}} \times 100$$

Whereas, M of Dox and M of Polymers are the initial mass of Dox and PCL, respectively, used in the double emulsion technique.

Morphology of Dox-PCL nanocapsules

The shape of the nanocapsules was determined using transmission electron microscope (TEM) (JEM-1400, Jeol, USA). A small drop of the nanocapsules suspension was added on the carbon coated grid, stained with uranyl acetate and air dried before measurement.

Assessments of nanocapsules size and size distribution

The average size and PDI of the nanocapsules were measured using DLS (Nanotrac wave II, USA). The sample was diluted and sonicated for 5 min then measured at room temperature.

Zeta potential analysis of the nanocapsules

The surface charges of obtained nanocapsules were measured as a function of zeta potential by DLS (Nanotrac wave II, USA).

Results

Calculation of EE % and DL % of Dox-PCL nanocapsules

Different weight ratio (1:20), (1:50) and (3:10) of Dox-PCL nanocapsules were successfully prepared by double emulsion technique. Encapsulation efficiency (EE %) was 69, 71.3 and 73.15 %, respectively and drug loading (DL %) was 3.3, 1.4 and 16.88 %, respectively.

Morphology of Dox-PCL nanocapsules

TEM image revealed that Dox-PCL nanocapsules prepared by double emulsion were spherical in shape as shown in figure 1. The nanocapsules appeared as bright spherical entities surrounded by dark stain. It was apparent that Dox was assembled in the nanocapsules core.
surrounded by hydrophobic PCL part and the aqueous phase by PVA was exposed to the outer shell.

Assessments of nanocapsules size and size distribution

The particle size and PDI are illustrated in figure 2 (A, B and C). The average size of the prepared Dox-PCL nanocapsules (1:20), (1:50) and (3:10) determined by DLS were 405, 464, 212 nm and PDI was 0.26, 0.22, 0.019 with a narrow monodispersed unimodal size distribution pattern.
Figure 2A: Particle size distribution of Dox-PCL nanocapsules

Figure 2B: Particle size distribution of Dox-PCL nanocapsules
Zeta potential analysis of the nanocapsules

The surface charge of the prepared Dox-PCL nanocapsules (1:20), (1:50) and (3:10) determined by DLS were -14.1, -18.3 and -22.

Discussion

Polymeric controlled release drug delivery systems (DDS) have considered as an essential field in the development of wide range of chemotherapeutic drugs formulation. Whereas, these polymeric systems able to deliver a wide range of anticancer drugs for a sustained period of time into the target sites in a slow release manner days, weeks, or months, protect them rapid degradation and enhance their bioavailability inside the body (Azizi et al., 2013).

In this study, the biocompatible and non-toxic PCL polymeric nanocapsules were successfully loaded with Dox by a modified double emulsion technique (W/O/W) according to (Katata et al., 2012) with different weight ratio of Dox-PCL nanocapsules (1:20), (1:50) and (3:10) with drug loading percentage (DL %) of 3.3, 1.4 and 16.88 %, respectively. Thus, nanocapsules prepared with Dox to PCL weight ratio of 3:10 was having the highest drug loading content.

Double emulsion technique is chosen for this study to encapsulate the hydrophilic Dox.HCl into the inner aqueous phase of the core-shell nanocapsules with high drug loading content. The weight ratio of anticancer to polymer were examined to optimize the nanocapsules colloidal suspension parameters such as DL %, morphology, size and surface charge. For
intravenous anticancer drug administration, nanomedicines with high drug loading content >10 % are favorable for cancer therapy, in order to decrease the unwanted drawbacks associated with nanocarrier materials contain low drug content (Shen et al., 2017).

The synthesized Dox-PCL nanocapsules were examined using DLS, and nanocapsules of weight ratio (3:10) was found to have smaller size of 212 nm, PDI of 0.019 with a narrow monodispersed unimodal size distribution pattern and more surface charge of -22.3 mv than other cases. The TEM image revealed that the nanocapsules were spherical in shape as shown in figure 1. Previous studies had shown that the spherical shape of nanocapsules has a vital role in the distribution of the anticancer drug, especially in biological practices, including internalization, passage through the blood circulation system and directing to the sites of cancer (Gratton et al., 2008). Transference of spherical nanocapsules is predictable to be much easier because of their distinct symmetry, whereas non-spherical nanocapsules may align or flip in the company of flow (Moghimi et al., 2001).

The size of nanocapsules used in drug delivery systems should be range from 10 to 250 nm. Thus, this size is large enough to protect them from rapid leakage into blood capillaries but small enough to run away from fixed macrophages that found in the Reticular Endothelial System (RES), such as the spleen and liver (Gref et al., 2000). Additionally, zeta potential (ZP) is considered as an important parameter to expect the storage stability of the colloidal suspension of the nanocapsules. The high values of ZP, either positive or negative are needed to approve stability and evade aggregation of the nanocapsules by electrostatic repulsive forces (Dash et al., 2012). ZP of more than ±13 mV indicates stable nanoparticles (He et al., 2015). PDI is considered as a numerical value representing the homogeneity of the sample.

Poly diversity index (PDI) is as a numerical value representative for the homogeneity of the nanocapsules colloidal suspension sample. If PDI value is less than 0.4, the particles of the sample are having similar size. In case, the value of PDI is more than 0.4, the sample is having similarity in size. If PDI is greater than 1, then the nanocapsules sample is considered completely heterogeneous (Tshweu et al., 2013).

Conclusion

In conclusion, hydrophilic Dox.HCl were successfully loaded into PCL polymeric nanocapsules with different weight ratio by modified double emulsion technique. High drug loading content (16.18 %) were obtained by increasing the amount of Dox and decreasing the
amount of PCL. The synthesized nanocapsules were spherical in shape with high zeta potential value, which considered as an indicator of stable colloidal suspension of Dox-PCL nanocapsules. Finally, Dox-PCL nanocapsules with ratio of (3:10) could offer a successful and promising potential application by minimizing healthy tissues exposure, while increasing Dox therapeutic effects.

Acknowledgments

This work was funded by the Egyptian Ministry of scientific research – STDF project (Grant No. 17-2-120).

References

الملخص باللغة العربية

تصنيع وتوصيف وتحسين خصائص كابسولات النانوية المصنعة من بوليمر البي سي ال من أجل توصيل مضادات السرطانات

أمينية ماهر "1، عبد الجواد فهمي"، مريم عبد الرحمن" و محمد أ. شميس "2

قسم الكيمياء الحيوية و البيولوجيا الجزيئية، معهد تيودور بلهراس للأبحاث، مصر.

قسم الكيمياء، كلية العلوم، جامعة القاهرة، مصر.

قد قدم نظام توصيل الأدوية القائم على كابسولات النانوية فاعليه في علاج السرطان في الأونة الأخيرة. يمكن تقليل نسبة عقار الهيدروكلاوريد دوكسوريةبيسين (Dox) من خلال استخدام الكابسولات النانوية البوليمرية. حيث تهدف هذه الدراسة إلى تصميم وتصنيع عقار الدوكسوريةبيسين (Dox) المحمول في الكابسولات النانوية البوليمرية القابلة للتحلل (PCL). تم تحضير الكابسولات النانوية البوليمرية باستخدام طريقة الاستحلاب المزدوج (Double Emulsion) وكمذيب عضوي وكمذيبات مزيج فينيل كمرحلة مانية خارجية، وتم تجميع البوليمرات ذاتيا إلى دفقات نانوية Shell/Core بشكل شبه ترطيب

تم دراسة تأثير نسبة الوزن من العقار إلى البوليمر وذلك من أجل تحسين خصائص الكابسولات النانوية البوليمرية، فقد تم إعداد نسبة وزن مختلفة من العقار (Dox) إلى البوليمر (PCL) وهي (1:02) و (1:05) و (1:03) و (1:01) و (1:00). و تعتبر الكابسولات النانوية البوليمرية المحمولة عقار ال (Dox) بنسبة (10٪) ملغ تحولى على أعلى نسبة من العقار من 16.88٪ و بلغ متوسط حجم الدفقات النانوية (22 نانومتر) الذي تم تغذيته بواسطة تقنية (DLS) وكانت قيمة (0.019) مع نمط توزيع أحادي. كشفت صورة المجهر الإلكتروني النافذ (TEM) أن الدفقات النانوية المعدة بطريقة الاستحلاب المزدوج كانت كروية الشكل. وكانت كابسولاتال (Dox-PCL) المصنعة بنسبة (1:03) ملغ تحولى على أعلى كمية من الشحنات، مما يشير إلى ثبات جيد لهذه الكابسولات النانوية. و أخيراً، تشير هذه النتائج إلى أن المعالجات مثل نسبة تحميل العقار بداخل الكابسولات، الشكل ، الحجم وشحنة السطح الكابسولات النانوية البوليمرية كانت أفضل مع تقليل كمية البوليمر (PCL) وزيادة كمية العقار (Dox).