Journal of Scientific Research in Science (Basic Sciences) is the official journal of the Faculty of Women, Ain Shams University. The Journal publishes original research papers on the different branches of basic sciences such as physics, mathematics and chemistry.

https://jsrs.journals.ekb.eg/

Corresponding author: Eman. K Tawfik
E-mail: Eman_tawfik10@yahoo.com.
Influence of annealing temperature of α-Fe₂O₃ nanoparticles on Structure and Optical Properties.

Eman. K Tawfik¹,*, Wael H.Eisa², N. Okasha³, H.A.ashry¹.

¹Radiation Physics Department, National Centre for Radiation Research and Technology (NCRT), Atomic Energy Authority (AEA), Nasr City, Cairo, Egypt.
²Spectroscopy Department, Physics Division, National Research Centre (NRC), Egypt.
³Physics Department, Girls College, Ain Shams University, Cairo, Egypt.

Abstract

This work has been focused on the synthesis of the raw materials iron oxide nanoparticles; hematite (α-Fe₂O₃) from Iron (II) chloride tetra hydrate (FeCl₂-4H₂O) and iron (III) chloride hexahydrate (FeCl₃-6H₂O) using Solid State Chemical Reaction technique. Nanostructure powders were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and UV-visible spectroscopy. XRD confirmed the formation of crystalline α-Fe₂O₃ nanostructured and its average crystallite size increased from ~ 12 to 28 nm with increasing annealing temperature from 200°C up to 800°C while SEM confirmed the morphology and the purity of the sample was evaluated from the energy dispersive spectrum (EDS). Moreover, strain decreased with increasing annealing temperature. UV-visible characterization indicated the existence of both direct and indirect band gap in the samples. All the annealed samples showed the direct band gap at ~ 2.21 eV. However, the indirect band gap increased from 1.6 to 1.94 eV when the annealing temperature increased from 200 up to 700°C and remained almost the same for sample annealed at 800°C. The observed values of optical band gaps were in close agreement with the reported values. Our results indicated that the annealing would give rise to a good crystalline α-Fe₂O₃ nanoparticles with reduced strain.

Keywords: Hematite; XRD; EDS; SEM; Strain; Optical properties.

1. Introduction

In recent years, research on transition metal oxide (TMOs) nanoparticles has attracted much attention for their potential technological applications. Iron oxide is one of the most important transition metal oxides. Iron oxide exhibits different phases such as FeO, α-Fe₂O₃, γ-Fe₂O₃, β-Fe₂O₃ and Fe₃O₄. Hematite (α-Fe₂O₃) is the most stable iron oxide under ambient conditions. It is a low cost non-toxic environment friendly material easily available in nature [2]. It shows n-type semiconducting properties with band gap = 2.2eV which lies in the visible region.
[3]. α-Fe$_2$O$_3$ exhibits rhombohedral centered hexagonal structure of the corundum type with a close packed oxygen lattice in which two-thirds of the octahedral site are occupied by Fe (III) ions [4]. α-Fe$_2$O$_3$ shows canted anti-ferromagnetic (weakly ferromagnetic) at room temperature, antiferromagnetic below the Morin transition temperature of 250 K and paramagnetic above its Néel temperature of 948 K [5]. α-Fe$_2$O$_3$ displays wide ranges of applications such as light-induced water splitting [6], catalysis [7], gas sensors [8], solar cells [9], field emission devices [10], magnetic recording [11], drug delivery [12], tissue repair engineering [13], magnetic resonance imaging [14], pigments [15] and spin electronic devices [16].

Several methods have been adopted for the synthesis of nanoparticles of α-Fe$_2$O$_3$ such as sol–gel [17], chemical precipitation [18], forced hydrolysis [19,20], hydrothermal [21, 22], sonochemical [23], solution combustion [24], high-energy ball milling [25] etc. Among the above methods, some of them are very expensive and requisite large time for the synthesis of final product. It is therefore necessary that the synthesis route would facilitate for large scale synthesis of nanoparticles of α-Fe$_2$O$_3$ in cost effective and easier method.

The aim of this work was the synthesis of α-Fe$_2$O$_3$ nanoparticles via solid state chemical reaction and studied the effect of annealing temperature on their structure as size and shape, microstructure, and optical properties. As well as an interesting anode material this has been investigated for a wide range of applications. It has found application in the manufacturing of gas sensors, catalysis, magnetism, lithium ion batteries and electrochemical capacitors.

2. Materials and Method

Materials

Iron (II) chloride tetrahydrate (FeCl$_2$.4H$_2$O), iron (III) chloride hexahydrate (FeCl$_3$.6H$_2$O), Poly vinyl pyrrolidone (PVP), and potassium chloride, were purchased from LOBA CHEMIE, India and all reagents were of analytical grade and synthesized without further purification. All solutions were prepared using de-ionized water.

Preparation of Iron Oxide Nanoparticles by Solid State Chemical Reaction technique

For the synthesis of iron oxide nanoparticles as solid phase, all the powders of FeCl$_3$.6H$_2$O (1.35 g), FeCl$_2$.4H$_2$O (0.50 g), KCl (3.9 g), and PVP (1g) were mixed and ground in agate mortar for 30 min at room temperature. The resulted mixture from grinding was a yellow paste. KOH powder (1.22 g) was added, followed by grinding for another 30 min at room temperature. During the KOH addition and the subsequent grinding, a significant amount of heat and some vapor was given off in the first few minutes. The product was washed several times with the distilled water then ethanol, treated in an ultrasonic bath for 15 min and centrifuged (3,500 rpm) for 10 min. This process was repeated several times until no Cl$^- \text{ ion}$ could be detected in the centrifuge. The product was then dried at 50 °C which became brown as nanopowder. Drying samples were ground and annealed at different temperature (200, 300, 400, 500, 600, 700, and 800) °C. The samples were allowed to cool down to room temperature then the
obtained powder kept in desiccator oven silica gel. The hematite \((\alpha-\text{Fe}_2\text{O}_3)\) nanoparticles are formed.

Characterization techniques

The crystal structures were studied by a powder X-ray diffractometer (shimadzu XRD 6000) prepared with Cu Kα as radiation source \((\lambda = 1.54\text{Å})\) in the 2θ range 15 to 80° with step size of 0.025°. The XRD patterns of nanoparticles were confirmed by comparing with the ICDD card. The morphology and chemical composition of the synthesized iron oxide nanoparticles were observed by scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDAX, Philips XL-30). The static magnetic properties for the samples in the powder were carried out at room temperature using a Model 4HF vibrating sample magnetometer with a maximum magnetic field of 20 kOe. The UV–vis spectra measurements were recorded using V-630 UV-Vis spectrophotometer (Jasco, Japan).

3. Results and discussion

3.1. Characterization of the \((\alpha-\text{Fe}_2\text{O}_3)\) NPS

3.1. a. X-ray diffraction (XRD) characterization of the \(\alpha-\text{Fe}_2\text{O}_3\).
Fig. 1: XRD pattern of α-Fe$_2$O$_3$ nanoparticle as prepared and annealed at different temperatures.

The composition and crystalline phase of the as-prepared and annealed products were examined by XRD. Fe$_2$O$_3$ exhibits two well-known crystalline phases: γ-Fe$_2$O$_3$ (maghemite) with cubic structure and α-Fe$_2$O$_3$ (hematite) with rhombohedral structure [26]. Fig.1 shows the XRD patterns of the as-prepared and annealed Fe$_2$O$_3$ samples. It is clear that, XRD pattern of the as-prepared sample did not show any diffraction peaks and low intensity broad to be detected indicating it is amorphous nature. This might be due to the small grain size or low degree of crystallinity of the as-prepared samples.

After annealing treatment at 300, 400, 600, 700, and 800 °C, the XRD pattern of the amorphous phase crystallizes into the more stable polymorph α-Fe$_2$O$_3$ with increasing temperature. The diffraction peaks appeared at $2\theta = 24.16^\circ$, 33.11°, 35.62°, 40.86°, 49.46°, 54.11°, 62.34°, 64.02°, and 71.89° are assigned to the planes (012), (104), (110), (113), (024), (116), (214), (300), and (101) respectively. This diffraction pattern can be indexed to the rhombohedral phase of α-Fe$_2$O$_3$ (ICDD card no. 33-0664). It has been reported that the annealing treatment gives rise to the crystallization into the more stable polymorph α-Fe$_2$O$_3$ at about 400°C [1, 27].

The sample annealed at 300°C shows a low intensity peaks, indicating the low crystallization degree. As the temperature increases from 300 to 800°C, XRD peaks intensity of α-Fe$_2$O$_3$ increases and the FWHM decreases, suggesting a growing of crystal domain size [28].

On careful analysis of the XRD patterns, it is found that the (104) and (110) are more pronounced than the other peaks. The plane (104) is related to the near basal plane (a-axis), whereas the plane (110) is related to the no basal plane (c-axis). As the FWHM of the 104 line decreases, the crystal is more elongated along the c-axis. Also, in the narrower 110 plane, the crystal is longer (thicker) in the a-axis direction [29]. Indicated that, the crystallite size relates to the crystalline dimensions along the c-axis direction. (110) Bragg reflections is dominated for sample annealed at 300°C indicating that the crystalline phase of α-Fe$_2$O$_3$ is preferentially oriented along the [110] direction. As the annealing temperature is gradually increased from 300 up to 800°C (all other parameters are kept unchanged), (104) peak increases with the simultaneous increase of the (110) peak. This suggests that [104] direction is the preferential orientation of α-Fe$_2$O$_3$ at high annealing temperatures. The values of the intensity and FWHM of planes (104) and (110) are given in Table 1. It can be seen that the FWHM of planes (104) and (110) decreases to 54% and 67% as the annealing temperature increases from 300 to 800°C. Hence, the particles tend to be thicker and larger.
Table 1: The values of FWHM for (104) and (110) XRD peaks of hematite (α-Fe$_2$O$_3$).

<table>
<thead>
<tr>
<th>Annealing Temperature (°C)</th>
<th>Intensity%</th>
<th></th>
<th></th>
<th>FWHM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(104)</td>
<td>(110)</td>
<td>I${(104)}/I{(110)}$</td>
</tr>
<tr>
<td>300</td>
<td>75.99</td>
<td>91.58</td>
<td>0.45</td>
<td>0.59</td>
</tr>
<tr>
<td>400</td>
<td>90.38</td>
<td>81.83</td>
<td>0.52</td>
<td>0.50</td>
</tr>
<tr>
<td>600</td>
<td>232.55</td>
<td>191.64</td>
<td>0.55</td>
<td>0.43</td>
</tr>
<tr>
<td>700</td>
<td>251</td>
<td>208.72</td>
<td>0.55</td>
<td>0.38</td>
</tr>
<tr>
<td>800</td>
<td>329.2</td>
<td>241.12</td>
<td>0.58</td>
<td>0.32</td>
</tr>
</tbody>
</table>

3.1. b. Effect of annealing temperature on the microstructural properties

![Variation of crystallite size and strain for α-Fe$_2$O$_3$ nanoparticle annealed at different temperature.](image)

Fig. 2: Variation of crystallite size and strain for α-Fe$_2$O$_3$ nanoparticle annealed at different temperature.

In order to study the effect of annealing temperature on the microstructural properties we estimated the average crystallite size (D) and the strain (ε) present in α-Fe$_2$O$_3$ nanoparticles from the full width at half maximum (FWHM) of the first major XRD peak using the following Debye Scherer equations [30]:

$$D = \frac{K\lambda}{\beta \cos \theta}$$ \hspace{1cm} (1)

$$\varepsilon = \frac{\beta}{4\tan \theta}$$ \hspace{1cm} (2)
Where β is the FWHM, θ is the Bragg’s angle and λ is the wavelength of Cu Kα radiation.

Fig. 2 shows the variation of crystallite size and strain for α-Fe$_2$O$_3$ nanoparticle annealed at different temperatures.

It is revealed from the figure that, crystallite size increased from ~12 to 28 nm when annealing temperature increased from 300 to 800 °C. So this means that, samples contain relatively smaller crystallites even though when use higher annealing temperature. Moreover its notes that, the strain for the same studied samples decreased with increasing annealing temperature. This behavior attributed the reflected in the optical band gap. According to [31] for extremely small size particles, surface pressure increases, hence lattice strain increases, which decreases the band gap. Our results indicated that with increasing the annealing temperature the particle size increase, surface pressure decrease hence lattice strain decrease. where the band gap in nanoparticles may be affected which related to three factors.

1. Surface and interface effect
2. Change in crystal structure by heat treatment
3. Lattice strain in the sample.

Our results indicated that the annealing is essential for synthesis of good crystalline strain free α-Fe$_2$O$_3$ nanoparticles.

3.2. UV–vis spectroscopy
Fig. 3: Variation of absorption coefficient of α-Fe_2O_3 nanoparticle at different annealing temperature with wavelength.

Figure (3) illustrate the absorption spectra of iron oxide nanoparticles at different temperatures (50, 100, 200, 300, 400, 500, 600, 700, and 800) °C by using UV-Visible absorption spectroscopy. It is clear that, at high absorption visible region, the peak absorbance at around 400 nm indicated that, the edges bands of absorption spectra is located at between (400-600) nm The optical band gap has been calculated using Tuac’s equations:

$$\alpha \nu = A(\nu - E_g)^n$$ \hspace{1cm} (1)

where

$$\alpha = \left(\frac{1}{t}\right)2.303\left(\frac{1}{T}\right)$$ \hspace{1cm} (2)

Where ν is the photon energy, α is the absorption coefficient, T is transmittance, t is the thickness of the sample (i.e 1cm for cuvette), n is either 2 for direct transition or $1/2$ for indirect transition. After substitution $n=1/2$ & $n= 2$ the Tuac formula will be as follows in Eq.3& 4 respectively, [32].

• For direct band gap:

$$(\alpha \nu)^2 = A(\nu - E_g)$$ \hspace{1cm} (3)

• For Indirect band gap:

$$(\alpha \nu)^{1/2} = A(\nu - E_g)$$ \hspace{1cm} (4)
Fig. 4: Variation of $(\alpha h \nu)^2$ vs. photon energy, $h \nu$ for α-Fe$_2$O$_3$ nanoparticles annealed at different Temperatures (a) and (b).
Fig. 5: Variation of $(a h \nu)^{1/2}$ vs. photon energy, $h \nu$ for α-Fe_2O_3 nanoparticles annealed at different temperatures (a) and (b).

Some reports indicated that α-Fe_2O_3 is an indirect band gap material [33, 3] and some other reported the existence of direct band gap in α-Fe_2O_3 [34]. It has also been reported that α-Fe_2O_3 exhibits both direct band gap and indirect band gaps [35, 36]. The spin forbidden Fe^{3+} 3d\rightarrow3d excitation gives rise to indirect transition and the direct transition corresponds to the O$_2$-2p \rightarrowFe$^{3+}$ 3d charge transfer [37]. Hence the optical band gap for absorption peak can be achieved by extrapolating the linear portion of the $(a h \nu)^{n} - h \nu$ curve to zero. Fig(4) shows The value of direct band gap of iron oxide nanoparticles decreased from \sim3.3 eV for the pure α-Fe_2O_3 [2] to \sim2.22 eV for the α-Fe_2O_3 nanoparticle with increasing temperatures. The reduction in direct band gap is due to increase in the grain size with increasing the temperature [38, 39]. Therefore, the blue shift in the band gaps with reduction in grain size is due to the quantum confinement effect [40]. The bandgap of the sample is found to be 3.3 eV, which is greater than the bulk Fe$_2$O$_3$. Thus there is a blue shift relative to the peak absorption of bulk Fe$_2$O$_3$. Unlike direct band gap, Fig (5) shows the indirect band gap increased from 1.1 to 1.9 eV when the annealing temperature increased from 400 °C to 800 °C, where the value of direct and indirect bandgap shown in table (2).
Table (2): Variation of direct and indirect band gap of α- Fe₂O₃ nanoparticle composites with different annealing temperature.

<table>
<thead>
<tr>
<th>Sample</th>
<th>E_g direct (ev) $(\alpha h\nu)^2$ Vs.hν</th>
<th>E_g indirect (ev) $(\alpha h\nu)^{1/2}$ vs.hν</th>
</tr>
</thead>
<tbody>
<tr>
<td>As prepared 50</td>
<td>3.33</td>
<td>1.1</td>
</tr>
<tr>
<td>100</td>
<td>3.33</td>
<td>1.1</td>
</tr>
<tr>
<td>200</td>
<td>3.33</td>
<td>1.1</td>
</tr>
<tr>
<td>300</td>
<td>3.23</td>
<td>1.2</td>
</tr>
<tr>
<td>400</td>
<td>2.72</td>
<td>1.4</td>
</tr>
<tr>
<td>500</td>
<td>2.62</td>
<td>1.5</td>
</tr>
<tr>
<td>600</td>
<td>2.42</td>
<td>1.6</td>
</tr>
<tr>
<td>700</td>
<td>2.3</td>
<td>1.8</td>
</tr>
<tr>
<td>800</td>
<td>2.22</td>
<td>1.9</td>
</tr>
</tbody>
</table>

3.3. SEM & EDX analysis

Fig. 6: SEM of the iron oxide nanoparticles of as-prepared (50 °C) and annealed at different temperature (200, 400, 600 & 800) °C for 2 h.
Figure 6 shows that, SEM images of the as-prepared sample and different annealing temperature of α-Fe$_2$O$_3$ nanoparticles. As the calcination temperature increased, the particles become finer and forming nearly spherical shaped particles. The average particle size calculated is 55 nm. The measured particle size using SEM measurements appears to be greater than that measured using XRD [41,42]. This suggests that the observations made by electron microscopes give grain size or particle size that may be consisted of more than one crystallite, while the XRD gives the crystallite size.

![Figure 6: SEM images of the as-prepared sample and different annealing temperature of α-Fe$_2$O$_3$ nanoparticles.](image)

Figure 7: EDAX spectra of synthesized iron oxide nanoparticles of as-prepared sample and at 800°C.

Composition at spectrum of the prepared α-Fe$_2$O$_3$ nanoparticles is confirmed by observing the EDAX Spectrum. The EDAX spectra for the α-Fe$_2$O$_3$ nanoparticles are given in the Fig. 7. α-
Fe$_2$O$_3$ nanoparticle calcined at 800°C has the peaks of iron and oxygen alone. The other samples have some impurities which are removed as the calcination temperature increases.

3.4. Magnetic properties:

![Magnetization curves](image1)

Fig.8: Room temperature magnetization curves of the synthesized hematite nanoparticles with different annealing temperature.

![Magnetization and Coercivity](image2)

Fig.9: The effect of annealing temperature on the saturation magnetization (M_s) and the coercivity (H_C).
Figure (8) shows the magnetic hysteresis loops of the α-Fe₂O₃ nano-structures obtained at different temperature (50, 200, 400, 500, 600, 700, 800). It can be seen that the nanostructures all exhibit weak ferromagnetic behaviors and the curves obtained of magnetization versus magnetic field do not show any saturation even up to the maximum applied magnetic field of 20 kOe. The complete values of the saturation magnetization (Mₛ) and coercivity (Hₘ) of the as-prepared α-Fe₂O₃ samples at different temperatures are summarized in Table 3. It is easy to find that the magnetization of the nano-particle samples is decreased with temperature but coercivity force of the samples increase with temperature of the nanoparticles. It is well-known that the magnetization of ferromagnetic materials is very sensitive to the morphologies and structures of the as-prepared samples and this is agree well with [43].

Table (3): The value of the magnetization (Ms) and coercivity (Hc) of the as-prepared samples.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Saturation Magnetization (Mₛ) emu/g</th>
<th>Coercivity (Hₘ) G</th>
<th>Remanent magnetization (Mr) emu/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>31.787</td>
<td>28.889</td>
<td>0.40275</td>
</tr>
<tr>
<td>200</td>
<td>34.550</td>
<td>22.7344</td>
<td>0.32810</td>
</tr>
<tr>
<td>400</td>
<td>15.953</td>
<td>43.399</td>
<td>0.39512</td>
</tr>
<tr>
<td>500</td>
<td>14.111</td>
<td>63.910</td>
<td>0.56964</td>
</tr>
<tr>
<td>600</td>
<td>2.8810</td>
<td>83.155</td>
<td>0.17282</td>
</tr>
<tr>
<td>700</td>
<td>0.37040</td>
<td>140.13</td>
<td>0.24286</td>
</tr>
<tr>
<td>800</td>
<td>1.9951</td>
<td>115.92</td>
<td>33.727E-3</td>
</tr>
</tbody>
</table>

But the typical static magnetic parameters including coercivity (Hₘ) and remanent magnetization (Mᵣ) etc. are remarkably different with the samples obtained at different T as in Fig (9). Among these samples obtained at (50, 200, 300, 500, 600, 700 and 800°C) the samples formed at 400°C shows a typical multidomains type behavior and have the best soft magnetic properties with the highest saturation magnetization (Mₛ) of more than 1.995 emu.g⁻¹, the lowest Mᵣ, Hₘ, and squareness (Mᵣ/Mₛ) of 0.40275 emu g⁻¹, 28.889 Oe, and 0.01267, respectively. The samples formed at 800°C have the largest Mᵣ (33.727e10⁻³ emu g⁻¹) and Hₘ (115.92 Oe). It is worth mentioning that the coercivity and squareness of the samples formed at 800°C are both one order of magnitude higher than those of the samples obtained at 100°C and 400°C. Meanwhile, they are also significantly higher than those of polycrystalline α-Fe₂O₃ nanostructures synthesized by a hydrothermal synthetic route (Zhu et al. 2006), α-Fe₂O₃ rhombohedra nanoparticles (Jing and Wu 2004). The magnetization of ferromagnetic materials was believed to be highly dependent on the geometry morphology, size, and crystallization of the materials. The different magnetic properties of the α-Fe₂O₃ complex nanostructure obtained at different temperatures may be attributed to the combined effects of the morphology, crystal size, and crystal structures. The high Mᵣ and Hₘ of the sample obtained at 800°C may be attributed to the magneto static dipole interactions and/or the shape anisotropy in the high-crystalline complex nanostructures in this work.
Conclusion

- An environmentally benign method was developed to fabricate iron oxide (α-phase nanoparticles α-Fe₂O₃).
- XRD spectra were recorded to confirm the evolution of single phase α-Fe₂O₃. SEM, EDAX, VSM, and UV-Vis spectroscopic studies on the prepared α-Fe₂O₃ nanoparticles reveal the successful synthesis and characterization of hematite nanoparticles.
- The crystallite size of hematite nanoparticles ranged from 12 to 28.
- Magnetic performances of the Fe₂O₃ products are illustrated; meanwhile the as-prepared single crystal nanoparticles show a significant enhancement of coercivity.

Acknowledgement

The present work was supported by the research funds of cooperation between National Center for Radiation Research and Technology (NCRRT), National Research Center (NRC) & Girls collage for Arts, Sci. and Ed. Ain Shams University, Cairo, Egypt. The authors would like to thank for their support.

References

[38] H. Zhang, A. Xie, C. Wang, H. Wang, Y. Shen, X. Tian, "Novel rGO/α-Fe2O3 composite

الملخص العربي للبحث
عنوان "تأثير درجة الحرارة لمركب أكسيد الحديد النانومترى (α-Fe₂O₃) على التركيب والخواص الضوئية"

تم تصنيع جسيمات أكسيد الحديد النانومترية (α-Fe₂O₃) باستخدام طريقة التفاعل الصلب باستخدام كلوريد الحديد الحديدي. باستخدام PVP (Polyvinylpyrrolidone) الذي يوفر الاستقرار على المدى الطويل وكذلك منع تكتل جسيمات أكسيد الحديد النانومترية. تم تشكيل جسيمات (α-Fe₂O₃) بواسطة التكوين الحراري عند درجات حرارة مختلفة (600 °C, 700 °C, 800 °C) وعلى درجة مئوية وقد بدأ تكون الجسيمات النانومترية عند درجة حرارة 400 °C ومنه وعند زيادة درجة الحرارة ذات درجة التبلور ودراسة الحصائص التركيبية للجسيمات النانومترية للهيماتيت (الحجم - الحالة الكيميائية) بواسطة تقنيات (XRD, UV-vis, SEM, EDAX, VSM) تم تأكيد الشكل الكروي المتجانس لطبيعة السطح بواسطة التصوير المجهرى للضوء SEM وكان حجم الجسيمات يتراوح بين 30-12 nm. وتعتبر طريقة تفاعل الحالة الصلبة لتحضير مسحوق α-Fe₂O₃ طريقة بسيطة وغير مكلفة وصديقة للبيئة ويمكن استخدامها لتحضير حبيبات نانومترية لمواد أخرى.

أسماء المشاركين في البحث:
- م.م/ إيمان كمال محمد توفيق مدرس مساعد بقسم الفيزياء الأشعاعية - هيئة الطاقة الذرية.
- أ.م/ وائل حسام الدين عيسى أستاذ مساعد بقسم الطيف - المركز القومي للبحوث.
- أ.د/ نجوى عكاشة مراد أستاذ فيزياء الجوامد وعلوم المواد بقسم الفيزياء - كلية البنات جامعة عين شمس.
- أ.د/ هدى عبد المنعم عشري أستاذ متفرغ بقسم الفيزياء الأشعاعية - هيئة الطاقة الذرية.